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When a trial function for Bose systems contains both one-particle and two-particle functions, the
cluster expansion is no longer simply related to the classical expansion of Mayer and Mayer. But by
observing that the permutations in one-particle functions can be represented exactly as in the high-
temperature expansion of the spin-} XY model, the cluster expansion is developed analogously to the

classical case.

INTRODUCTION

In studying the ground-state properties of *He and
“He in both liquid and solid states, the Hartree
method has been shown to be quite inadequate!
because of the hard-core interactions. The inadequacy
is usually repaired by the so-called Jastrow function

N
W(ry---ry) =¢("1""’N)'I<If(|"i — 1))
=0 -Y,, §))

where @ is a one-particle (plane-wave) product
function, which contains the properties of inde-
pendent-particle systems such as excitations and
statistics, and f(|r; — r;|) is defined as

fAri=rih)—0,

—1,

[ri — r;l <o,
lri — rj] = 0,
where r, is the hard-core distance.

In treating the ground state of an infinite system,
® is usually taken to be unity for Bose systems and
a Slater determinant for Fermi systems. Recent
calculations? using these trial functions have shown
some striking results. The main drawback of the
Jastrow function is that an explicit expression for the
expectation value of the Hamiltonian cannot be
obtained. This expectation value must, therefore, be
evaluated as a cluster expansion. Owing to @, the
cluster expansions for Bose systems and Fermi systems
will, in general, be quite different. In Fermi systems
the presence of the Slater determinant makes the
expansion extremely complicated.? But in Bose
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1 For example, see R. Jastrow, Phys. Rev. 98, 1479 (1957); J. B.
Aviles, Ann. Phys. (N.Y.) 5, 251 (1958); D. J. Thouless, The
Quantum Mechanics of Many-Body Systems (Academic Press Inc.,
New York, 1961), Chap. III.

2 W. E. McMillan, Phys. Rev. 138, A442 (1964); W. E. Massey,
ibid. 151, 153 (1966); G. N. Nosanow, ibid. 146, 120 (1966); W. E.
Massey and C. W. Woo, ibid. 164, 256 (1967).

3 The cluster expansions for Fermi systems were recently given
by J. W. Clarke and P. Westhaus, J. Math. Phys, 9, 131 (1968).

systems, if @ =1, the cluster expansion can be
developed exactly as the classical treatment of Mayer
and Mayer. This is because the classical expansion
formalism depends only on the boundary properties
of exp —v(|r; — r;|)/kT, where v(|r, —r;|) is the
two-body potential, and our f(|r; — r,|), which plays
the mathematically equivalent role to exp —v/kT,
meets the same boundary requirements.

From the variational point of view, the more
satisfactory Jastrow function for Bose systems is
® 5 1. Girardeau* has pointed out that a better trial
function is one which incorporates the notion of a
generalized condensation.> Luban® has further raised
the possibility that for liquid *He the picture of a
smeared condensation provides a more improved
(i.e., lower free energy) description than the generally
accepted picture of Bose-Einstein condensation in
the zero-momentum state. Thus this leads us to
consider a more general one-particle function for ®:

O = [N! mn, 1 3 Plug () ry)l, )

where P denotes a permutation of the coordinates
ryv v ry, u(r) represents a complete orthonormal
set of one-particle wavefunctions (plane waves), and
n, is the occupation number of the state o (3, n, = N).
We shall assume here that the momentum distribution
is smeared over a large number of states whose
momenta are, however, all macroscopically negligible.

Now, the cluster expansion for Bose systems is
no longer simply related to the classical one and,
as in Fermi systems, the exchange effect of the

4 M. Girardeau, Phys. Fluids 5, 1468 (1962); J. Math. Phys. 6, 1083
(1965).

5 The Hartree—-Fock ground-state energy of a system of bosons
interacting via predominantly attractive forces [i.e., Fourier trans-
form of two-body potential 7(0) < 0] is minimized when the
particles undergo a smeared Bose-Einstein condensation. By a
“smeared condensation,” we mean that n, = O(N?%) for |a| < o,
where 0 < x < 1, and #n, == 0 otherwise, and oy = o (N) — 0 as
N — o0, ny4 is the occupation number of state o. For other pertinent
comments, se¢ Ref, 4 and also G. Carmi, J. Math. Phys. 9, 174 (1968).

8 M. Luban, Phys. Rev. 128, 965 (1962).
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one-particle function must be taken into account in
all of the resulting clusters. In Bose systems, however,
since the exchanges bring about only the positive
signs, the cluster expansion can still be developed
very analogously to the classical case. It will be seen
that the presence of the symmetrized product of one-
particle functions leads to a simple change in the
numerical coefficients of the clusters. These coefficients
are very closely related to the occurrence factors of
the spin clusters of the spin-} XY model.” We present
here a cluster expansion for a Bose system using a
full Jastrow function.

NORMALIZATION INTEGRAL

One important quantity we can calculate with the
Jastrow function is the so-called generalized normal-
ization integral,®

D= f dry - dry VT 3)
which is a quantum analog of the classical partition
function. The presence of ® prevents us from ex-
panding (3) in the manner of the classical cluster
expansion. But with some modifications it is still
possible to take advantage of the formal relationship
between (3) and the classical function.
Using (2) in (1), we can show that

D=y f dry - By {1 + 13, 0(12)

ayxe
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where

L®(12) = expi(ong 11+ tgy " 1), s = 03 — &y,
L®(123) = exp i(otyp* 1y + oz " Fp + 03y * I'g)

+ exp i{ogg " 1y + gy " 12 + 32 1),
and so on. D, is formally identical to the classical
partition function. Equation (4) represents an ex-
pansion in the number of the particles permuted. The

prime on the sum means that the diagonal terms are,
in general, excluded.” When three or more particles

7 M. H. Lee, J. Math. Phys. (to be published); D. D. Betts and M.
H. Lee, Phys. Rev. Letters 20, 1507 (1968).

8 F. Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
17, 543 (1957).

? The permutations of particles in the same state are all included
in the first term of the expansion. By the restrictions o, # o,
o, 7 oy # dg, etc., we thus avoid the permutation of particles in
the same state. This restriction is actually too stringent; in some
cases it must be relaxed to allow certain degenerate permutations.
For example, suppose there are four particles, say, ijkl, in state
o005, , respectively. If a; = o, then, although particles i/ and j
must not be permuted with each other, they can still be permuted
with particles k or I, or both: When there is a degeneracy of this
kind, one can show that such a term vanishes in the thermodynamic
limit (¥ and ¥ — oo with p held fixed). Hence, it is actually sufficient
to retain the permutation where there is no degeneracy.
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are permuted, there is a multiplicity of the plane-wave
factors (or L-factors) arising from different ways of
permutation. This multiplicity makes the Bose-
cluster expansion nontrivial. When the permutations
are equivalent,'® each cluster will have the same value.
It will be seen that the number of equivalent permuta-
tions is directly related to the occurrence factors of
the spin clusters, and the various inequivalent
permutations can be represented by the spin graphs.
Therein lies the connection between the Bose-cluster
expansion and the high-temperature expansion of the
XY model.

GRAPHIC REPRESENTATION OF L-FACTORS

L™(ij- - +) can obviously be represented by some
graphs. But, with an appropriate choice, it is possible
to construct graphs for L-factors which are also
graphs for the spin clusters of the high-temperature
expansion, so that the multiplicities of L-factors are
just the sums of the occurrence factors. Let L¥(ij),
which denotes the exchange of particle / in state o; and
particle j.in state o;, be represented by G(if) as shown
in Fig. 1.

For two particles this is the only possible exchange.
The same graph G(1) also represents!! the spin
cluster S;S;S7.S; which has a unit occurrence factor.
Three particles, say, ijk in states o, a, , respectively,
can be exchanged in two ways. Hence let L®(ijk)
be represented by G(ijk) and G(ikj). Since the two
exchanges are evidently equivalent, they will con-
tribute equally to the cluster expansion; both graphs
can be represented by G(2), provided that we associate
2 with it. For three particles there are no other
exchanges possible. But G(2) also represents the spin
clusters S;S;787S;S¢S; and S}HS878785;787S;, each of
which has an identical trace value and the sum of
their occurrence factors is 2. Four particles, say, ijk/
in state o0 ;04x,, respectively, can be exchanged in 4
inequivalent ways: G(3), G(1, 1), G(4), and G(1 x 1).
In G(3) and G(1, 1) all states are distinct, but in G(4)
three states are distinct, and in G(1 x 1) only two
states are distinct. G(3) represents 6 equivalent
exchanges, where all particles are permuted with
one another. G(1, 1) represents 3 equivalent exchanges,
where 4 particles are permuted only pairwise. When
3 states are distinct, 4 particles can be equivalently
permuted 4 ways; and when only 2 states are distinct,
4 particles can be permuted but one way. The four

19 Two permutations are termed equivalent if one can be trans-
formed into the other by exchanging the labels of particles. When
permutations are inequivalent, then it is not possible to transform
one permutation into another by such processes.

11 The arrows and labels are dropped whenever convenient.
Graphs are listed in Table I.
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G{ij)

i k i k
FiG. 1. Labeled graphs of the L-factors arising from the
exchange of particles according to Bose statistics.

inequivalent exchanges of L™ (ijkl) will contribute to
the cluster expansion generally with different values.
In the spin cluster expansion, we encounter exactly
the same four inequivalent graphs G(3), G(1,1),
G(4), and G(1 x 1) with their occurrence factors
6, 3, 4, and 1, respectively.

From these examples it is clear that the L-factors
can be made to have a one-to-one correspondence to
the spin clusters of the XY model. Hence we can
immediately write down all the L-factors from the
knowledge of the high-temperature-expansion graphs
of the XY model previously given.

TasLE 1. Unlabeled graphs of the L-factors which are made
isomorphic to the spin graphs.®

G (1) G(2)
A
G(3) G{4)
A
G(1,1) G1x)
|
3 See Ref. 7.
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We can further write (3) in the form

D 2 (N ' 3. 3. 7(2) (2
o= L+p 5 > Hg Ny, | d°ry dr,L%(12)g77(12)

0
-1
+ p3(]:) > Hg Mg,y
X f Pr, Pr, Prd®123)g¥(123) + -, (5)

where p = N/V is the number density, g¥, g®, - - -
are the Jastrow 2-particle distribution function, 3-

particle distribution function, - - -, respectively, de-
fined in the usual way,
3 .. 3 2
o NN T
gy (riry) = 5 = g;(12),

P f Pry - Py

3. ... g8 2
o N(N — 1)(N — 2)fd ryc o dory Wy

gy (rirers) = 3 ,

P fd3r1 e dryPy

and so on. If we decompose the many-particle
distribution functions by the Kirkwood superposition
approximation (KSA)™ and introduce

g(12) = 1 + h(12),

where £ is nearly zero everywhere except where the
interactions are strong, then

D

1
-1+ p‘l(];’) S non, f &ry dPrlP(12){h(12))
0

-1
+ o (I;J) > na,lna,zna,afaﬁr1 d®ry dry

x I¥(123){h(12)h(13) + h(12)h(23)
+ h(13)h(23) + R(12)h(13)h(23)} + -+ . (6)

The cluster integrals in (6) will vanish unless all the
coordinates over which we integrate appear explicitly
in the products of A’s. The formal structure of the
nonvanishing products of A’s is the same as that of
the classical clusters.!?

12S. A. Rice and P. Gray, The Statistical Mechanics of Simple
Fluids (Interscience Publ. Co., New York, 1965), pp. 79-82, 114-134.

13 J. de Boer, Rept. Progr. Phys. 12, 329 (1948); J. Mayer and
M. G. Mayer, Statistical Mechanics (John Wiley & Sons, New York,
1956).
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Then, dropping all the degenerate terms in the
L-factors, we can write

D 2
' + {Npp, + 3 Np*(387 + 26)

o
9
+ ; Np*(168, + 128,85 + B5)

VB
= by + Npby + 2Np%b,

+ 9Np3b4 + %(prg)z + -, (7)

where 8, and b, are defined as in the classical clusters.!4

Thus, except for the numerical coefficients resulting
from the multiplicities of the L-factors, (7) is formally
identical to the cluster expansion of the classical
partition function. Hence it is possible to expand the
normalization integral to a high order immediately
from the knowledge of the occurrence factors.

APPLICATION

We shall now apply our cluster-expansion formalism
to obtain expressions for the ground-state energy and
the pair-distribution function. In the usual way, the
ground-state energy is given by

f &r, - drPT HY

. , ®)
fd3r1 e daerFhF
where
hZ N N
H=—_mZV?+E' V(ir; — r;l). €)
i=1 ij

The presence of the Jastrow function in ¥ enables us
to consider a very realistic two-body potential, such
as the Lennard-Jones 12-6 potential in (9). We are
interested in obtaining an expression for E with the
single-particle momenta subject to the conditions of
Girardeau’s generalized condensation.

The ground-state energy can be expressed'® as

E/N = %pf Eri(E 2m)Y{(Vf — fVfHf 7 4 V(n)e(r),

(10)
where
o(rrs) = ﬂ’;—;—“ f dry- - dry [PE (1)

W Strictly speaking, f§; and b; are a-dependent. But since oo,
which is the maximum value of o, is vanishingly small, 8(x) ~
B0) = B;.

15 The expression is simplified by the assumption of generalized
condensation (see Ref. 4). For an analogous fermion system, see
J. B. Aviles, Ref. 1.
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The bracketed terms in (10), which may be regarded
as an effective interaction, can be explicitly given'®
since the pair function f and the pair potential ¥ are,
in principle, known. If ® = 1, then g(r,r,) represents
the usual pair-distribution function and it may be
calculated by a variety of methods.!” In our general
case, where @ # 1, we shall show that g(r,r,), and
therefore E, can still be expressed as a cluster expan-
sion. It may be worth pointing out here that if the
ground-state energy is to have a saturation property,
the density dependence must be contained in g(ryr,).

The general pair-distribution function may be
further written'® as

g(12) = Zﬂ nng{ A(app)

+ (1 — 8,9 A(xfaf)IM(ef; 12)D7, (12)
where « N
A(aﬂaﬁ) = ua (rl)uﬂ(rl)ua (rz)uﬂ(rZ)s (13)
D =J‘d3r1 o dPry |
=(nony Yylngon)y,  (14)
and
M(ozﬂ;12)=<---na—1“'np—1~~'|
X‘{f.zll"'na—1"'na—1"'>}\?~2- (15)
By |---), we mean an n-particle orthonormalized

(Hartree-Fock) state. If there are unintegrated co-
ordinates, they are explicitly shown,as in (15).

Evidently we may apply the same cluster develop-
ment to M(«f; 12). First, M(«f; 12) is expanded in
orders of the number of particles permuted; next,
each term in the expansion is expressed in the form of
the many-particle distribution function g (r, - - - r,),
which is then reduced by the KSA to a product of the
pair-distribution functions g;(r;r;). Since the two
coordinates (r; and r,) are fixed, each term will
therefore be proportional to g,(r,r;). The resulting
cluster diagrams of M(xf; 12) consist of the same
diagrams of D and diagrams with the two fixed
coordinates.'® Thus one can write

n,ng

g(12) = g,(12) g NN 1)

X {1 4 (1 — 8,5 P 18125 p), (16)

18 M. H. Lee and M. Luban, Phys. Rev. (to be published).

17 For example, W. E. McMillan, Ref. 2, and M. H. Lee, Physica
(to be published).

18 This may be readily seen if we write the Hartree-Fock function
as

B(N) = [NN — DI} Eﬂ (nang)ua(1)ug(2)
X,
X ""na—l"‘"ﬁ—l"'thz,
which is properly orthonormalized. Also see K. Huang, Brandeis

University Summer Lecture Notes (W. A. Benjamin Inc., New York,

1959), Vol. II, pp. 2-4. .
1 Due to the momentum restriction (see Footnote 9), diagrams
with only one unintegrated coordinate can be shown to vanish.
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where?
1+ Npb, + p™(12) + - -
= H(12; ) D(p).

S(12; p) =

an

We have previously given the expansion for the
denominator of (17), D(p) = D/D,. The »,(12) are
defined as in the classical statistical mechanics®:

2, (12) = (1/n) f S wh(i) d®ry - - drpyas (18)

where h(ij) = g;(ij) — 1. The formal structure of
S(rp) is again very similar to the classical counterpart.
This similarity may be exploited to put S(rp) in a
more tractable form. Perhaps the clearest way is by
Kubo’s method of cumulants.?

For this purpose it is convenient to re-express
D(p) by

D = (m(l + IR, (19)

where /7 are tensors for the occurrence factors {see
Appendix). Then, by Kubo’s method, (19) may be
written as

(m(1 + Ih(if))) = exp (expy, 2 IUh(ij) — 1),, (20)

where L is the so-called “leveling operator,” which
levels off a product of A(ij) with a power greater than
unity; ¢ under the angular bracket denotes a cumulant
average. Except for the tensors /¥, our expression is
formally identical to In Z or the free energy (— F/KT).
It is well known in statistical mechanics that the free
energy has a cluster expansion in terms of only
the irreducible clusters (5,) of the bonds h(ij) =
exp —V(ij)/KT — 1. Thus we can also write

Pln!(n)ﬁn —1
D =N+ 0N, 21
P | 4+ n

where /'™ are pure numbers (see Appendix) and §,
are the nth irreducible clusters of the bonds A(if) =
gy — 1.

Similarly, M(ryr2; p) may be expressed in the
cumulant average

In M(12; p) = (expy, 2" IPh(ij) — 117,

where, by the prime, A(12) is excluded from the sum
and (rr,) are the two unintegrated coordinates. The
cluster expansion of (22), which generates two types of

(22)

2% Actually, S(rpy should depend on single-particle momenta.
But in generalized condensation the dependence is negligible, as was
pointed out inFootnote 14.

21 J. E. Mayer and E. W. Montroll, J. Chem. Phys. 9, 2, 626 (1941).

2 R. Kubo, J. Phys. Soc. (Japan) 17, 1100 (1962).
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diagrams [#, and I',(12)], thus gives
(expr, 3" 17h(ij) — 1),
nyln)
= NS IR s e 1) + oY, @)
n n n

where I',(12) denotes the irreducible diagrams of
7a(12).

Finally, together with (17), (21), and (23), we
obtain the density expansion

In S(12, p) = 3 p"I'“T(12) + O(N7Y).  (24)

There is a theorem?2?® which relates the set of irreducible
diagrams to the set of connected diagrams. By aid of
this theorem, (24) may be further written in a more
convenient form:

S(12; p) =1 4 3 p"I"™y,(12), (25)

where v,(12) denotes the nth 1-2 connected clusters of
the bonds h = gy — L.

Thus (10), (16), and (25) give the desired expression
for the ground-state energy. With Girardeau's
generalized condensation, the expression leads to an
integral of the form®

EIN = f Prog(PENS), (26)

where

verr) = (B2m){(Vf)* — fNFY 72+ V(). @D)
At relatively low densities, the density behavior in (26)
is dominated by g;(r). Since g;(r) vanishes rigorously
for small distances, the ground-state energy remains
finite for any realistic two-body potential, such as the
Lennard-Jones. Hence, the ground-state energy as
given by (26) is expected to show a saturation at some
reasonable value of the density.!®

DISCUSSION

Since our cluster expansion is obtained by aid of
the KSA, our results (7) and (26) are only approxi-
mate. In fact, the applicability of this whole formalism
crucially depends on the validity of the KSA. The
reliability of the KSA has been recently discussed by
Alder® and Rahman.®® For simple classical fluids one
can numerically compare the 3-body distribution

23 J. M. J. Van Leeuwen, J. Groneveld, and J. de Boer, Physica
25, 792 (1959). .

%% In model theories, Girardeau has shown that the ground-state
energy with generalized condensation is lower than the ground-state
energy with usual Bose condensation by a factor of 2 (see Ref. 4).
The same factor is preserved in this treatment. Lowering of the
ground-state energy is also shown by K. Sawada and R. Vasudevan,
Phys. Rev. 124, 300 (1961).

25 B. J. Alder, Phys. Rev. Letters 12, 317 (1964).

¢ A. Rahman, Phys. Rev. Letters 12, 575 (1964).
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function with the reduced triple products of pair-
distribution functions at various separation distances.
The results for hard spheres and a Lennard-Jones
fluid show that at relatively high densities the KSA is
surprisingly accurate. The agreements are almost
quantitative. Furthermore, the KSA seems to give
even better agreements for higher distribution func-
tions. These results thus suggest that at fluid densities
the KSA is a reasonable approximation to make.

In a sense, the use of the KSA in our cluster
development is not entirely inconsistent with the
essential ansatz of (1). As our N-body ground-state
wavefunction contains no correlations higher than
the two-body, it may be regarded as having been
obtained from a true N-body correlated wavefunction
by repeated applications of the KSA.

The expression (25) for S(rp) is “exact” in the sense
that all nonvanishing graphs have been accounted
for. As can be seen from the virial expansion for fluids
and the high-temperature expansion for spin systems,
S(rp) is not expected to be exactly summable. If,
however, only a restricted class of diagrams are
retained in the sum, it may be expressed in an integral
equation form similar to the hypernetted chain-
integral equation for fluids.?®

Finally, in obtaining the cluster expansion, we
have explicitly made use of Girardeau’s generalized

M. HOWARD LEE

condensation. While this is motivated by the results
of Girardeau and Luban, our formalism can be
adapted to other forms of condensation. In such
cases the simplicity of our.cluster formalism shown
here is not expected to be preserved.
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APPENDIX: OCCURRENCE FACTORS

Tensors for the occurrence factors are defined to
satisfy the following relations’:

0o JO) [k = [
[ = (J@)2, JPEEm = J@) ete. 5 (Al)
I =,
i o— i )
I.I’ =7 =3, (A2)
[ = ([(1))2’
Jli = 1 = @),
?
N = 0, ]2 = 1, 1@ =2,
[ =9, [ =44, etc. (A3)
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Formal solutions of inverse scattering problems for scattering from a potential, a variable index of
refraction, and a soft boundary are developed using a method devised by Jost and Kohn.

1. INTRODUCTION

An inverse scattering problem seeks to obtain a
quantitative description of an unknown scatterer
from a knowledge of the scattering data. It is known
in special cases (e.g., potential scattering,! soft-
boundary scattering?) that under sufficiently restrictive
hypotheses the totality of scattering data, as embodied
by the scattering matrix, uniquely determines the
form of the scatterer. The problem, then, is to imple-
ment these uniqueness results with constructive
algorithms.

The most successful approach to this problem is
that developed for potential scattering by Gel'fand
and Levitan.® They obtained an algorithm which
reproduces a suitably restricted spherically symmetric
potential as the solution of a certain integral equation
whose kernel is expressed in terms of the scattering
data. But, while the Gel'fand-Levitan algorithm is an
extremely elegant and highly satisfactory procedure,
it does not seem to lend itself easily to more general
problems. Attempts to extend it to nonspherically
symmetric potentials* and variable indices of refrac-
tion® are not entirely satisfactory.

Simultaneously with the appearance of the Gel’fand-
Levitan algorithm another approach to the same
problem was introduced by Jost and Kohn® and
developed by Moses.” They obtained an algorithm
which reproduces the potential essentially by inverting
the Born series for the scattering matrix. Although
the Jost-Kohn algorithm is less efficient and less
attractive than its more famous competitor, it is
simpler in conception and easier to generalize.

This paper describes the formal extension of the
Jost-Kohn algorithm to various inverse scattering
problems and discusses the feasibility of practical

L N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
25, 9 (1949).

2 P. Lax and R. Phillips, Bull. Am. Math. Soc. 70, 130 (1964).

31. M. Gel’fand and B. M. Levitan, Izv. Akad. Nauk SSSR,
Ser. Fiz. 15, 309 (1951).

41. Kay and H. Moses, Commun. Pure Appl. Math. 14, 435
(1961).

® H. Moses and C. de Ridder, Lincoln Laboratory Report No.
TR 322 DDC 422444, 1963.

8 R. Jost and W. Kohn, Phys. Rev. 87, 979 (1952).

7 H. Moses, Phys. Rev. 102, 559 (1956).

applications. There are three sections: the first on
potential scattering, the second on scattering from a
variable index of refraction, and the third on scatter-
ing from a soft boundary. Only scalar wave equations
are considered, although the extension of these results
to vector wave equations appears to offer no difficulties
in principle.

2. POTENTIAL SCATTERING

The scattering of a wavefunction ¢(x, k) from a
fixed potential V(x) is governed by the time-independ-
ent Schrodinger equation

(V2 + K)p(x, k) = V(x)p(x, k). )

The solution, which is to consist of an ingoing plane
wave plus an outgoing scattered wave, may be

expressed as
¢ilkl 1x=y1

,k) = efkx — Jk)ydy. (2
b = e 4 [ vy, @

As |x| — oo, the behavior of ¢(x, k) is given by

T(K, k) + o(—l—). 3)

[x/?

ik Ix|

p(x, k) — %= 4 i

7 |x|

Here, k' = ([k|/[x])x, and T(k’, k) is given by

T = [ Vet 0 dy. @
Thus, T(k’, k) contains the scattering data. In fact,
if |k| is proportional to the energy of the incoming
plane wave and k/|k| is the incoming direction, then
T(k’,k) gives the fraction of the outgoing wave
scattered in the outgoing direction k'/|k’|.

It is known that, if V(x) is square-integrable, then
Eq. (2) has a solution ¢(x, k) which is jointly contin-
uous for (x, k)€ E; x K, where K is any compact
subset of E3 not containing the origin.8 It follows
from (4) that if V(x) is also integrable, then T(k’, k)
is jointly continuous for (k’,k) e K x K. In partic-
ular, if V(x) vanishes outside some sphere, then
@(x, k) is analytic in k and hence T(k’, k) is analytic

8 T. Ikebe, Arch. Ratl. Mech. Anal. 5, 1 (1960).
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in k and k. Moreover, T(k’, k) is jointly square-
integrable in k and k'.?

The problem now is to solve (4) for ¥(y), given
T(k', k). A formal solution is obtained by first
solving (2) for ¢(x, k) and substituting the result in
(4). Thus,

10, = [ %o dy + [[e vy

eIkl ly1i—y2! .
—————— V(yp)e* "2 dy, dy,
4 [y; — ¥
f Ky V( ) 1“(1 ly1—¥gl
-+ f Y (yy
4 |y, — ¥
X V(yy) - - V(y,)e™
+dy, - dy + (5)

If Fourier transforms are taken throughout, then

T(k', k) = V(k’—k)+fV(k’—k”) 21 -
k? —k
xV(k”—k)dk-"+---+f~-fV(k'—k")
1 ” " n
me(k — k") V(k'™ — k)
x dk™ - dK" 4 (6)

It is known that (5), and hence (6), are convergent
expansions for sufficiently weak potentials.®

Now if k' is put equal to —k, T(—k, k) replaced by
eT(—k, k),and V'by 3°_ €™V, , then the coefficients
of €™ can be equated in (5) or (6). Thus

T(—k.K) = V(=2K), m =1, ™
0=V, (-2k)
+3 e
=2 74 +7'1
okl |y1~yz!
X — Vm(h) e V(YY)
47 |y, — Yl
eXvidy, - dy,, m> 1. (8)
Hence,
V,(2k) = T(k, —k), ®)
Val(2K) = — Z 3 Velk — k) (K — KO
=2 i
X V0 = K K 4 1)
x dk(z') . dk”, (10)
VK) = 3 V,(2K). (11)
m=1

9 T. Ikebe, Pacific J. Math. 15, 511 (1965).
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Thus (9), (10), and (11) provide a formal solution to
the inverse problem for potential scattering. Jost and
Kohn have shown that the algorithm is convergent
for sufficiently weak spherically symmetric potentials.®
Perhaps a similar result for nonsymmetric potentials
can be established along the same lines. But even if
the algorithm fails to converge, it may still be sum-
mable in some sense sufficiently precise to recover the
potential. Simple examples are worked out in Ref. 6.

Note especially that only a part of the scattering
data is used in this algorithm; namely, only the scat-
tering data for arbitrary incoming direction, and out-
going direction equal to the negative of the incoming
direction (i.e., backscattering data at all energies and
all aspects). Moreover, these data are used only in
the first step of the algorithm, namely Eq. (9).

Other possibilities present themselves. If,instead of
putting k' = —k in (5), we fix the incoming direction
(say along the negative x; axis) and put |k'| = [k|,
then the same formal procedure leads to a similar
algorithm with (9) replaced by

V1(2h) = T(k', k). (12)
Here, 2h = k' — k. As k/|k]| is fixed, |k’| ranges over
all energies, k’/|k’| ranges over all outgoing directions,
and h ranges over the half-space determined by the
formula h-k < 0. Hence, V;(2h) is not yet deter-
mined for all values of h. But if V(y) is real, then

V(—2h) = V(2h). Thus the algorithm is complete if
(9) is replaced by
V1(2h) = T(k” k)’

dh=k —k, (13

(14)

This algorithm reproduces the potential from the
scattering data for a fixed incoming direction, all
energies, and all outgoing directions, The convergence
properties, of course, are the same as in the preceding
case.

A similar algorithm is obtained if the outgoing
direction is held fixed. The roles of k and &’ are now
interchanged and (13) determines ¥,(2h) only in the
half-space h - k' > 0. Otherwise the result is the same
as before.

V,(—2h) = V,(2h).

3. SCATTERING FROM A VARIABLE
INDEX OF REFRACTION

‘The scattering of a wavefunction ¢(x, k) from a
variable index of refraction n(x) is governed by the
wave equation

[V2 + K2(x)]e(x, k) = 0. (15
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If w(x) =1 — n(x), Eq. (15) becomes
(V2 + X)) g(x, k) = K2w(x)p(x, k). (16)

This equation resembles Eq. (1), with V(x) replaced by
k2w(x). For fixed k, the behavior of the solutions in
the two cases is identical, but the dependence on k is
different. It is just this difference that renders the
Gel’'fand-Levitan algorithm inapplicable.> However,
the Jost-Kohn algorithm remains insensitive to the
dependence on k throughout. In fact, if V(x) is
replaced by k*w(x) throughout, the following results

are obtained for the backscattering case (k' = —k):
k*w,(2k) = T(—k, k), amn
Kowa(2K) = = 33w, (k — k') =

= ! k? — k?
X w, (k" = K”) - - w, (kY + k)
x dk'? - dk”, (18)
K*w(2k) = X K*w,(2k). (19)

Similar algorithms hold for the other cases.

4. SCATTERING FROM A SOFT BOUNDARY

The scattering of a wavefunction ¢(x,k) from a
soft boundary is governed by the wave equation with
the boundary condition

(V2 + k)o(x, k) = 0,
¢(x, k) =0,

xeR,

x € dR. (20)

Here R’ is the exterior of a compact region R in E,
with smooth boundary dR. Again the solution, which
is to consist of an ingoing plane wave plus an out-
going scattered wave, may be expressed as the solution
of an integral equation of the form

oIkl 1x-v1

x, k =e“""+2f —_ , k) dy.
¢(x, k) o A Ix — v 50(%) oy, k) dy
ey
Here 0/0n(y) denotes the exterior normal derivative
and the integration is taken over the boundary R of

R. As (x| — oo, the behavior of ¢(x, k) is given by

) ey €
o(x, k) — ¥ 4
47 |x|

Here again k' = ([k|/|x|) |x] and T(k’, k) is given by

TK, k) + O(riﬁ)' (22)

T(K', k) = 2 f ik (¥, k) dy.

2R on(y) (23

As before, T(k', k) contains the scattering data. It
is known that, for compact regions with sufficiently
smooth boundary, @(x, k) is analytic in k and hence
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T(k', k) is analytic in k and k'.2 Moreover, T(k', k)
is bounded (but no longer square-integrable) in k
and k'.

The problem now is to extract from (23) a quantita-
tive description of the shape of the boundary. For
this purpose it suffices to determine the characteristic
function yp(x) of the region R:

if x € R,
if x¢ R,

1r(x) =1,
=0, 24

or its Fourier transform. A formal solution is obtained
by first solving (21) for ¢(x, k) and substituting the
result in (23). Thus,

T(K, k)

— zf e—ik'~y 0 eik-y dy
oR on(y)

oKl ly1—yai

+ 4 f f gm0
on(yy) 4 |y, — ¥el
0

X e gy dy, + - -
an(yz) € Yz dy, +
+ zﬂf. . ‘fe~ik,.h 3 ikl
on(y,) 47 |y, — ¥al
a ..
X zk~yndyn...dy . (25)
on(y;)  on(y,) 1

This may be rewritten in terms of volume integrals
involving y p(x):

T(K. k) = 2f eIy ply) - Ve dy
E;
ei|k| Jy1—val

R R R
47|y, — el
X Vyp(yy) - Ve**2 dy, dy, + - -

o gtk [y1—vel
+ 2"J1' ) 'J‘e'"‘ Wyr(y)  V———
47 |y, — ¥l
X Vyp(ys) - - Ve ¥ndy, - - -dy,.  (26)

If Fourier transforms are taken throughout, then

T(k', k)
= 2xp(k" — k)K" — k) -k

- 4f xr(k — K)(k — k") - K(k"? — k¥
X 2rk" —K)(k" — k) - kdk" + -
+ 2 f . -fo(k' — k(K — k")

. kl/(k1/2 _ k2)-l XR(k” — kw)(k” _ k'//)
. km(km2 _ kZ)Al .. XR(k(n) _ k)(k("’ _ k)
~kdk'™ - - - dk,. Q27
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The strong resemblance between (26) and (6) suggests
that the Jost-Kohn algorithm may be applicable. If
k' is put equal to —k, T(—k, k) replaced by eT(—k, k),
and x5 by 3 €™y,., then the coefficients of €™ can be
equated in (27). Thus,

T(—k, k) = —4k%*,(—2k), m=1, (28)
0= —4k2xm<—2k)
+ z f fxn( —k — k”
i=2r;+ - +7'z—
X (—'k k//) k” kuz k )_
X X,z(k”.'— km)(k” —_ kl//)
N A lrl(k(i) - k)(k(i) _ k) . (__k)
dk(i) ceodk, m> 1. (29)
Hence,
4Ky, (2k) = —T(k, —k), (30)
4Ky, (2K) = + 22 32 f f 1k — K)
x (k k; k' Xr (k(z) )
x (k' + k) -k dk"’ ~dk’,  (31)
My R(2K) = 3, A (2). (32

REESE T. PROSSER

Thus (30), (31), and (32) provide a formal solution
to the inverse problem for boundary scattering. The
question of convergence is now under study. It appears
that the algorithm may be convergent at least for
regions with sufficiently smooth convex boundaries.
But even if the algorithm fails to converge, it may
still be summable in some sense. In any case,each step
is well defined and yields quantitative information
about the region which may be useful in applications.

Here again only a part of the scattering data is used,
namely, backscattering data at all energies and all
aspects. Similar algorithms can obviously be developed
for other data, including fixed ingoing direction,
fixed outgoing direction, and fixed scattering angle
(e.g., bistatic data). It seems plausible that even less
data will suffice, inasmuch as the boundary can be
described by two independent parameters and all the
cases described above involve three. This possibility is
also under consideration.
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Appell’s polynomials in two variables orthogonal in a triangle are described and some of their prop-
erties and those of related generalized hypergeometric functions are given. An application to the expan-
sion of the scattering amplitude is suggested, the equal-mass case being discussed in some detail. A simple
crossing matrix is derived. Difficulties introduced by inequality of the particie masses are explained.
A Neumann formula is presented which permits an analytic continuation in the parameters to be made
of the expansion coefficients for parts of the amplitude: This is in analogy with the Froissart-Gribov
continuation. A conjectured analog of the Sommerfeld-Watson transformation then suggests the
existence of fixed cuts in the partial-wave scattering amplitude.

1. INTRODUCTION

The study of the partial-wave expansion of the
scattering amplitude has a number of overlapping
motivations. This expansion is a simple way of
parameterizing the angular distribution; the param-
eterization has immediate physical significance because
angular momentum is conserved; unitarity does not
mix different angular-momentum states; resonances,
etc., have well-defined angular momenta; analytic
properties of the partial-wave amplitude in the
angular momentum may be used to associate reso-
nances together into families; the trajectories on which
these resonances lie give information about the high-
energy behavior of the crossed-channel scattering
process. There is, nonetheless, a certain mismatch
between the partial-wave expansion and the crossing
symmetry of the scattering amplitude. occasioned by
the necessity to select the particular channel in which
the angular-momentum decomposition is to be
performed. This has motivated various searches for
a crossing-symmetric analog or generalization to the
partial-wave expansion. We would like to refer
especially to the work of Khuri,’ who used monomials
in the Mandelstam variables, and more recently to
the papers of Balachandran er al*~* These latter
papers made kind reference to the interest that one
of us had in the past expressed in the use of poly-
nomijals in two variables, and it is principally from a
feeling of encouragement by this reference that the
present paper has been written. To a certain extent we
have succeeded in making a limited advance in the
direction we had set ourselves. But although we feel

! N. N. Khuri, Phys. Rev. Letters 10, 420 (1963); Phys. Rev. 132,
914 (1963).

2 A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821 (1968).

3 A. P. Balachandran, W. J. Meggs, and P. Ramond, ICTP,
Trieste, Preprint IC/68/44,1968.

* A. P. Balachandran, W. J. Meggs, J. Nuyts, and P. Ramond,
ICTP, Trieste, Preprint IC/68/46, 1968.

that some of the results we have obtained may have
an intrinsic mathematical significance, we have been
frustrated in our attempts to find any clear-cut
physical application. There is, however, a tentative
suggestion of a mechanism for the generation of
fixed cuts in the angular-momentum plane.

There is in the Bateman Manuscript Project a
section headed “Orthogonal Polynomials in the
Triangle,”® and it was the serendipitous discovery
of this section which first initiated the work embodied
in this paper. In Sec. 2, we introduce the polynomials
in two variables (two of the Mandelstam variables,
t and u, in our application) and give an expansion of
the scattering amplitude. In Sec. 3 we give further
properties of these polynomials and of the functions
which generalize them; in particular, we discuss the
differential equations they satisfy (see also Appendix
C) and their partial-wave expansions (cf. Appendix
A). The crossing matrix is also defined and derived
in Appendix B. Section 4 concerns the functions of the
second kind, related to the polynomials in a manner
analogous to that whichrelates the Legendre functions
of the second kind to the Legendre polynomials. We
give some integral representations and broach the
problem of asymptotic behavior. All the foregoing
discussions concern the equal-mass case, and in
Sec. 5 we outline some of the serious difficulties that
unequal masses introduce. Finally, in Sec. 6 we indulge
in some speculations which might suggest a general-
ization of the Regge—Sommerfeld-Watson transforma-
tion of the amplitude, and which indicate the possible
existence of the fixed cuts mentioned above. We must
caution the reader that the overlap in this paper
between what we have proved and derived with a
degree of confidence and what we believe to have

5 A. Erdélyi, Ed., Higher Transcendental Functions, Vol. II

(McGraw-Hill Book Co., Inc., New York, 1953).
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any deep significance for the understanding of the
crossing symmetric two-particle scattering amplitude
is very slight.

2. EXPANSION OF THE SCATTERING
AMPLITUDE IN POLYNOMIALS IN
TWO VARIABLES

We shall for simplicity restrict our considerations
to the elastic scattering amplitude 7(stu) for two
spinless particles of equal mass, with only brief
mention of the problems associated with generalizing
this treatment. If we choose units in which the
particle mass is m = %, the Mandelstam variables are
constrained by

s+t4+u=1 2.1
The s-channel partial-wave expansion is
T(stu) = 2,20 + DP(2)A,@),  (22)
where
t= %a(l - Zs)a
u=3a(l + zy), (23)
and
a=1—s5=—pim? (2.4)

This partial-wave expansion may be thought of as an
expansion of T(stu) = T(a, z,) at each fixed value of
a in terms of the polynomials P,(z,), which are
uniquely characterized as the orthogonal polynomials
in z, on the interval (—1, 4 1) with unit weight func-
tion and suitable normalization. In this paper we
shall be concerned with an expansion of the amplitude
T(stu) in terms of polynomials E, (¢,u) of two
variables; these together with a related set of poly-
nomials F,,, (¢, u) form a biorthogonal system on the
triangle A given by s > 0, ¢+ > 0, u > 0, again with
unit weight function.

The problem of constructing polynomials in two
variables orthogonal on a triangle has been discussed
by Appell,® who introduced generalizations of the
Jacobi polynomials which are orthogonal polynomials
on a line. As a special case of these generalized Jacobi
polynomials (appropriate to the present problem of
spinless particles, just as Legendre polynomials are
the appropriate special case of one-variable Jacobi
polynomials), we consider the polynomials F,,, (¢, u),
defined by

F,(tu) = 11 (aat) (%)nt’”u“(l —f—u)y"n,
(2.5)

whichis,of course,closely analogous with the Rodrigues

S P. Appell, Arch. Math. Physik (1) 66, 238 (1881); P. Appell and
J. Kampé de Férier, Fonctions hypergéométriques et hy persphériques,
polynomes d’ Hermite (Gauthier-Villars, Paris, 1926).
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formula

1 2 _ g\
Pi) = 5o+ )( Y
It is clear that F,,, is of degree m + n in each of 7 and
u. These polynomials may be expressed in terms of
one of Appell’s generalizations of the hypergeometric
series to two variables, namely,

Fios 6,857y s e = 3 DedDlB o039
ra pL gl (),(¥),
The notation is conventional and
(@), = T'(a + n)/T(a) (2.8)
for r=0,1,2,---. Explicitly, for m and n integers
theseries Fy(—m — n;m + 1,0 + 1; 1, 1; ¢, u) termi-
nates and is precisely the polynomial F,,,. Even for
arbitrary complex values of u and v, the series
Fl—p—v;u+1,v+1;1,1; 80 converges uni-
formly and absolutely for (¢, ) in A and may be used
to define a function F,,(r, u), which bears the same
relationship to the polynomials F,, as does the
Legendre function P,(z) to the Legendre polynomials
P;(z) J=0,1,2,--+). When y= —m—1 and
v = —n — 1 with m and » nonnegative integers, the
function £, again reduces to a polynomial, this time
of degree m in f and n in u, and we write

F—m 1,—n— l(t u) Emn(tu) (29)

The two systems of polynomials F,,, and E,,, are
biorthogonal on A with unit weight function’; we
have

f f dt duF ,(t, u)Ex(tu) = 0,30, [20m + n + 17

(2.10)
An arbitrary function of two variables defined on
A and belonging to a suitable class of functions may
be expanded in terms of either of the systems E,,,
F,... We shall be most interested in the first of these
expansions and shall write for the expansion of the
scattering amplitude T(sfu)

T(stu)y =2 2(m + n + 1)*4,,,E,.(t,u), (2.11)

71t is possible to construct an orthogonal system, rather than a
pair of biorthogonal systems, and this has been discussed by W.
Grobner [Monatsh. Math. 52, 38 (1948)]. With a modified notation,
Grobner’s system is given in terms of our polynomials F by
Paw = S (pn _ NL@M N+ DM+ N = 0!

TS MAEMNATN=—nCME+NF1—n)!

X Farsn—n,n;

for these polynomials
[ dt duPyy(t, WPy y(tu) = [2(M + N + @M + DI 03 p0-Oxy-
A

The principal disadvantage is the fact that these polynomials do not
satisfy any simple system of second-degree differential equations.
They are, however, eigenfunctions of the operator discussed in
Sec. 3 and Appendix C.
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where the coefficients A4,,, are obtained from Eq.
(2.10) as

A, = f dt duT(stw)F,, (). (2.12)
A
3. SOME PROPERTIES OF THE FUNCTIONS F,,

The generalized hypergeometric function F,,(¢, u)
satisfies the pair of coupled partial-differential
equations

{t1 — 0% — 10,0, + [1 + (v — 21110,
~ (u+ Dud, + (u + »)u + DIF,(u) =0,
{u(t — uw)d; ~ a0, + [l + (p ~ 2u]o,
— (4 D, + (u + v + DIF,(t,u) =0.
3.1

From this it follows that F,, is an eigenfunction of the
differential operator O,

= —t(1 — )0 + 2tud,d, — u(l — u)o’

+ Bt -1, + Gu-192,, (32
with eigenvalue (¢ + »)(u + v + 2); that is,
=(u+v)u+v+2F,. (3.3)

Note that the polynomials F,,, and E,, , are both eigen-
functions with the eigenvalue (m + n)(m + n + 2). If
we change independent variables to a and z = z, the
operator O becomes

O =—- [a a1 — a)o, + 0,(1 — z93,), (3.9

and this is the operator considered by Balachandran
and Nuyts.? They showed that if J> = —0,(1 — z%)0,
is the differential operator representing the square of
the s-channel angular momentum and J? and J2 are
similarly defined, then, with a and z as independent
variables,

O=J4J4+JE,

and evidently O commutes with J2. The situation in
the unequal-mass case is very different and is dis-
cussed briefly in Sec. 5. Some simple results on the
operator O and its eigenfunctions are given in
Appendix C.

Balachandran and Nuyts considered functions
which were simultaneously eigenfunctions of J? and
of O. To within a numerical factor, their functions are

(3.5

u+v(a z) = Py(z)a’
X Flp+r+J+2,J—pu—»;2J +2;0),
(3.6)

1825

which satisfy
OF Ly = (u+nu+v+2FL, G
2$1{+v = 'I(J + 1)$u+v (38)

They considered the case when u and v were integers
m and n; and then, with J < m 4 n, the hyper-
geometric function in the expression for FJ_ .
becomes just
(m4+n—NH1QJ+ D
m+n4+J+ 1)

the last factor being a Jacobi polynomial. The poly-
nomials F3 , were considered by Balachandran and
Nuyts as the basis for an expansion of the scattering
amplitude. It has also been observed® that these
functions are particular cases of harmonic functions
for the group SU(3).%

The functions F,(r,u) may be expanded “in
partial waves,”” and we obtain (see Appendix A)

Fo(tu) = Z,;2J + Df 157, (a,2), (3.10)
where the numerical coefficients /7] are given by
_(=p =, + 1),

2J + 1!

X oFolu + 1, =J, —J;1, —v = J; 1). (3.11)

It is amusing that the corresponding coefficients

e’r{m = fim-—l.—n—l (312)

for the polynomials E,,,, are related to the 3j symbols®
of 0(3):
J (m+n+2), (-

(2J+1 0}
m+n J(l

2a), (3.9)

J
S

)[(m+n+1+1)T

e =00 ¥ ) (m +n — J)!
x (J 3(m 4+ n) %(m+n))
0 ¥m—n) ¥n-—m
for 0<J<m+n,
=0 for J>m+n. (3.13)

The presence of the “threshold factor” a/ in | has
already been remarked upon by Balachandran and
Nuyts.

The polynomials E, , and F,,, may also be expanded
in partial waves in the crossed channels. For example,

if we write

t=1-—b; = 3b(1 — z)), (3.149)

we obtain

‘Emn(ts u) z (ZJ + 1)~£np‘7in+n(b’ Zt) (315)

8 M. A. B. Bég and H. Ruegg, J. Math. Phys. 6, 677 (1965).

? Our notation and phase convention for the 3j symbols is that of
M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr.,
The 3j and 6j Symbols (M.L.T. Press, Cambridge, Mass., 1959),
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and
an(t9 u) = z (2J + l)fin‘ti'r{rf-n(b’ Zt)’ (316)
J=0
where the coefficients are (see Appendix A)
g (D™ n!(m+n+J+ 1
"o mtm =)+ DI+ T+ DRI+ 1)
3.17)

and what may be obtained by formally interchanging
me>—m—landn<sr —n—1,

(=D™™m! (n + J)! (m + n)!
nt(n—J1m+n—=0FQJ+ 1!

One may again notice the threshold factors 47 in
the terms of the expansion.

We conclude this section with a remark about the
crossing matrix. Balachandran and Nuyts?? derived a
matrix which connects the coefficients in an expansion
in terms of &Y (a, z,) with those in an expansion in
terms of 7 (b, z,); the matrix is quite complicated,
the elements involving ,F functions of unit argument.
If we perform a similar exercise, that is, compare the
expansion

T(stu) = 3 2(m + n + 1)°4,,.E,.(tv) (3.19)

rdJ
Jonn =

(3.18)

with the crossed-channel expansion
T(stu) = Y 2(M + N + 1)*BynEyn(us), (3.20)
MN
the crossing matrix is

Xmn = 2m 4+ n + 1) f f dt duE,, (1u)F yya(us)
A

(3.21)
and

Byy = Z X v Amn (3.22)

The integral in Eq. (3.21) may be evaluated (see
Appendix B) and leads to the very simple expression

m(M
X7y = Spnazan(—1) (n) for M >n,

= 0, otherwise. (3.23)

4. A NEUMANN FORMULA: FUNCTIONS
OF THE SECOND KIND

The Neumann formula for Legendre functions is

Wz — 2y P, 4.1
0, =3[ =P @)

which is valid for integer values of J. Here, of course,
Q,(z) is the Legendre function of the second kind,
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which satisfies the same differential equation as does
P(2).

Let us introduce, by analogy, functions G
defined for m and » integers by

mn

Gt 1) = f f dt’ du'(t — Y — w)F,, (', u').
A

(4.2)

We may use the Rodrigues formula, Eq. (2.5), for
F,.., and then integrate by parts m times in ¢’ and »
times in u’. This results in

—1ymtn
G,,,(tu) = (Tn%v_ f f dt' du't'™'"(1 — ' — wymtn
A

8 (g)m(a%)[(t = t')tu - u')]

- (_ 1)m+nt—m—lu—n—1

xffdt’ du't™u'"(1 — ¢/ — u')™n
A

n—m—1 n—n—1
X (1 — t—) (1 — "—) .
1 u

The integral may then be recognized, apart from a
numerical factor, as another of Appell’s generaliza-
tions of the hypergeometric function. Explicitly we
have

Gty ) = (= 1)™7G,, (1, 4)

= F(m + I)F(n+ I)F(m + n + 1) t—m—lu——n—-l
T@m + 2n + 3)

4.3)

><F3<m+1,n+1;m+1,n+1;

2m 4+ 2n + 3;%,1). 4.9
u

We shall continue to use this definition of G even
when m and n become arbitrary complex numbers u
and ».

From the differential equation satisfied by Fy, it
is easy to show that G,, satisfies the same pair of
differential equations as does F,,. The function G,,
plays a role relative to F,, analogous to that which
Q, plays relative to P,. )

An integral representation for G,, [the generaliza-
tion of Eq. (4.3)] is [Reu > —1,Rev > —1,
Re (u +v) > —1]

Gt u) = f f At du't " u™(1 — ' — w
A

X (t — )*u — w')™, (4.5)
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rf

(4.6)

which is to be compared with (Re v > —1)
1+t 1 -2Vl 4 2'\(z — 2
==| dz
242) 2L Z( 2 )( 2 )( 2
IfO>Reu> —1,0> Rev > —1, we have
F(t,u) = [P@l(=p — DLEG)I(=» — DI

1 1
xf dxf dyx"y’(1 — x)y#1
0 0
X (I — 71— tx — uy)*™, 4.7

which is the analog of the representation, valid for
0> Rev> —1,

P(z) = TI(=» — DI
X f dxx'(l — U — 31— 2)xP. (4.8)

The above integral representations for F,, and Guv
may be used to deduce that both functions have
branch-cut singularities on the lines t =1, u =1,
t+u=1, t= 00, u= ; and that Guv has, in
addition, branch-cut singularities on the lines ¢ = 0,
u = 0, Just as the branch cut from z = — 0 to z =
—1 of Q,(2) is a trivial logarithmic branch cut, so that
(z — 1)"+1Q(2) has a cut only from z= —1 to
z = 41, so also the cuts from ¢t = 1 to f = o and
fromu=1tou= o of Guv are trivial, removable,
logarithmic singularities. The function (r — 1)*+! x
u— 1)”+1Guv(t, u) has singularities only on the lines
t=0,u=0,t+ u=1,i.e., onthe boundaries of A,

The asymptotic behavior for large z of Q,(2) follows
directly from the expression in terms of the hyper-
geometric function

0 = tE
'+ 3
) XFGv+ LW+ v+ 3278, (49
so that
Q(z)~27"" 1F(v t1 z7 as z > oo, (4.10)

P'er + ")
In a similar fashion,use may be made of Eq. (4.4) to
deduce that
¢ L+ DO+ DG+ v+ 1) oy
“ I'Qu + 2v + 3)

1
X 2F1(ﬂ+1,u+ i;2u+2v+3;t—),

as

T+ OPe+ D+ v+ 1) [ty
'Qu + 2v + 3)

as both t— o0, u — oo.

u — 00,

(4.11)
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For P,(z) the behavior for large z is,of course,also
well known. It is instructive to observe that since
P(2), Q,(z), and Q_,_,(z) all satisfy the same second-
degree differential equation, there must exist a linear
relation with constant coefficients between the three
functions. From this alone, with the behavior z—V-!
for Q,(2), it follows that P (z) has an expression as a
piece with behavior z—"-! and a piece with behavior z*.
The situation with F,, is more complicated, even
though F,, and G, satlsfy the same pair of partial-
diﬁ‘erentml equatlons

We are able though to give a derivation of the
behavior for large z at fixed a of

(5757
2 2
In this limit, the differential equations for F,, become

[(l—a)(—;l—fg) +(/t+v—1)]

0z
d =z 0
2 _z9F
X (8a aaz) w

=0

and

+w+ww+v+akw=m<mm

to which the only solutions of the form

F~ f(a)z* (4.13)
are
F ~(az)*, 4.14)
with
e=pu+v or a=—pu—v—2

The same conclusion may also be reached on the
basis of the asymptotic expansions for the F;, function
given by Minton,!® namely, that F,, behaves in this
limit as the sum of two terms with behavior like
{az)** and (az)"# "% More explicitly, we have

sin my sin 7y

G,, ~ const (az)"*". (4.15)

27° cos m(pu + v)
It may be worth recording that the function H,,(r, u),
defined by

—~p,,~4 — N2 a2

H”y(t, ll) = "y’ z I u ( tu)m( 1)q ,
v (p + @ (=20),(—27),

is a solution of the same system of equations as F,,
which behaves asymptotically like t*u*, i.e., (az)**".

(4.16)

10 B. M. Minton, Proc. Cambridge Phil. Soc. 64, 1055 (1968).
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5. SOME PROBLEMS ASSOCIATED WITH
UNEQUAL MASSES

The kinematics of the scattering process for the
general case of unequal masses are,of course, more
complicated than for the special case of equal masses
we have considered. Unfortunately, these complica-
tions lead to difficulties which we have not fully over-
come. If we consider the process for which the s
channel has particles 1 and 2 with masses m, and m,
initially and particles 3 and 4 with masses m; and m,
in the final state, then the magnitude of the s-channel
initial-state center-of-mass 3-momentum p, is given
in terms of s by

pe = [s = (my + my)’ls — (my — my)*|/4s (5.1)
and similarly p,, the final-state s-channel 3-momen-
tum, is given by

P = [s — (ms + mp)*Jls — (mg — my)*}fds. (5.2)
The boundary of the physical region is given by
O(stu) = stu — s}(m} + mi — mj — mj)?
— ti(mi + mg — mi — my)*
— ul(mi + mi — mf — mg)*
+ (mi + my — ms — m3)
X (mi + mg — m; — m})

X (mi + mi — mj — my)

=0. (5.3)
In terms of s-channel variables, we may write
O(stu) = 4sp2pP(1 — Z2). (5.9
In the equal-mass case, we have simply
O = stu, (5.9)

and the cubic curve @ = 0 reduces to the three lines
s=0, t =0, u =0, which provide us in that case
with the edges of the triangle. Along two of those
edges (=0 and v =0) we have z2=1; this is
important for the simple connection between F,,,(, ¥)
and 77 .

In the general-mass case, the triangle in the middle
of the Mandelstam s—¢-u plot may, of course,still be
identified with the region A on which the two-
variable expansion is to be made. But its boundary
is now no longer part of the boundary of the physical
region, and many of the attractive features of the
results of Sec. 3 become obscured. In particular, the
functions F,,(t, u) still satisfy the differential equa-
tions Eq. (3.1), and so are still eigenfunctions of the

differential operator O, as given by Eq. (3.2). But this
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is no longer equal to the form given in Eq. (3.4), nor
to any simple generalization of that expression. Nor
is there any obvious generalization of Eq. (3.5),
expressing the connection between O and the angular-
momentum operators.
Indeed, we still have (with z, and, say, s as inde-
pendent variables)
2 _‘a 2 a
J 1=z Pk

5.6

0z, z, (5:6)
If ¢ and u are taken to be the independent variables,
with s =2 —t—u (X=m +m} + m? +m) al-

ways understood, this becomes

pe -2 D)2 2)
s\dt du/ \ot Ou
Still with ¢ and u as independent variables, the differ-

ential operators for the total angular momentum in
the # and u channels are

(5.7

10 0
Ji=— =0 —
t tdu Ju
and
Ji——lg(l)—a—, (5.8)
udt ot

respectively. It is no longer true that O = J? 4 J2 4 J2;
furthermore,

U2, J24+ J2 #0, (5.9)

unlike the situation in the equal-mass case.

Of course, from the point of view simply of making
an expansion of the scattering amplitude in terms of
some complete set of functions of two variables, we
are completely at liberty to choose some other
variables than s, ¢, and u, and to define a region A
in terms of them and so to consider polynomials in the
new variables, (bi)-orthogonal on A. One such choice
of new variables §, /, and @ has been suggested by
Balachandran et al.,* which has an elegance and sym-
metry that commends it for attention. They choose
for §, f, and # the eigenvalues of a Gram matrix,
which are the roots of the cubic equation

x— Zx2 4+ W(s, t,u)x — O(s, t,u) = 0, (5.10)
where
X =mi+ m;+ mi+ mg,
¥ = st — {(mi + mi — m; — m})
+ e — H(mi + ms — mi — mj)
+ us — Hm} + mj — mj — m}), (5.11)
and @ has been defined in Eq. (5.3). Then clearly
§+i+a=2%2, (5.12)
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and the boundary of the physical region, ® =0, is

now given by
5t = 0. (5.13)

In the equal-mass case, 3, 7, i can be identified with
s, 1, and u. If the region A is now taken to be the
triangle defined by the lines § =0, f = 0, i = 0, the
expansion suggested is in terms of E,,,,(, @). However,
the cubic transformation between s, ¢, u and §, 7, @
spoils any possibility of connecting the ditferential
operator O [of which E, (7, #) is an eigenfunction] with
any simply identifiable differential operator in the
s, t, u variables. It also prevents any application of
the Neumann formula along the lines indicated in the
next section. From the point of view simply of
parameterizing a function defined on a region bounded
by a cubic curve like © = 0, it may still be useful to
use this mapping of that region onto a triangle. For
example, the Dalitz plot of a decay process with
three particles in the final state has just such a bound-
ary and so may be mapped onto a triangle, there to be
parameterized by the coefficients in an expansion in
terms of E,, (F, ).

We think, on balance, it is preferable to keep as
the region the triangle bounded by s =0, ¢t = 0, and
u =0, even at the expense of losing the relatively
simple connection with the angular-momentum ex-
pansion.

6. AN ANALOG OF THE SOMMERFELD~
WATSON TRANSFORMATION

The scattering amplitude T(stu) may be expanded
in terms of the polynomials E,,,(¢, u),as in Eq. (2.11).
We would like to use such an expansion to discuss
the asymptotic behavior of the scattering amplitude.
A program which immediately suggests itself for this
examination is indicated by the familiar procedure in
the Regge analysis!* based on the partial-wave
expansion which we shall recapitulate briefly. What
is done in that case is to take the expansions

T*(stu) = Z,(2J + 1P (2)A5(s)

of amplitudes for which
T(stw) = H{TH(stu) + TH(sut) + T-(stu) — T-(sut)}
(6.2)

and for them to define analytic continuations A*(J, s)
in J of the signatured partial-wave amplitudes A (s).
It is then possible to write the partial-wave sums as

(6.1)

T=(stu) = % § dJ(2J + V)P (—2)AE(J, s) csc =J,
(6.3)

11 See, for example, E. J. Squires, Complex Angular Momenta and
Particle Physics (W. A. Benjamin, Inc., New York, 1963).
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the integration being over a contour C in the J plane.
The contour of integration is then distorted to yield

TE(stu) = 2l fﬁdJ(ZJ + 1P (—2)A%(J, s) csc 7]
I Je’
+ 73 QuE + DP,a(—2) csc moB),
’ (6.4)

expressing 7= as a sum over contributions from poles
of A*(J, s) at positions J = «F(s) and with residues
B7(s), and a background integral. The behavior of
T*(stu) for large values of z is now seen to be domi-
nated by the contribution

720 + DI + DI + DI esc maB(s)(—22)"

of the pole at J = « lying furthest to the right.

The crucially important step in this procedure is the
construction of the functions 4%(J, s) defined in the
complex J plane, which interpolate the physical
values A73(s) attained at J = even/odd integer. And
this is done by using the representation of Froissart
and Gribov. The starting point is the dispersion
relation in z at fixed s for T(stu) = T(sz), assumed to
hold with, say, N subtractions, namely,

fz ’ N
T(sz) = 1 J ‘Lz ('Z“,) 0,(s, 2')
z\z

TJew 2 —

w0 ’ N
+ lj ’dz (Z‘;) ox(s, 2")
T Jzg 2 — Z\Z

+ polynomial of degree N — 1 in z.

(6.5)

From the Neumann formula, Eq. (4.1), it follows
that if

A ) =L f 4205, 0,2, (6.6)

T
then A*(A™) agrees with A4;(s) for J an even (odd)
integer greater than N, provided that

Gﬂ:(sa Z) = GR(S’ Z) + GL(Sa _Z) (67)

and z, is the smaller of z and —z,. Furthermore,
from the known behavior of the Legendre functions
(s and P; for large J, it follows that this definition
of A%(Js) is the unique interpolation consistent with
the passage from Eg. (6.3) to Eq. (6.4), which is
possible only if there is no contribution from the arc
of the contour at infinity.

The hope that the only singularities in the J plane
of the partial-wave amplitude exposed by the distor-
tion of the contour would be simple poles (as can be
proved to be the case for potential scattering with a
wide class of potentials) was shown to be in vain. The
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important distinguishing feature of the crossing-
symmetric theory, which has no counterpart in
potential theory, is the presence of the third double-
spectral function (in the sense of the Mandelstam
representation). This leads directly, as was first dis-
cussed by Gribov and Pomeranchuk,? to a pole in
A*t(A7) at each negative odd (even) integer value of J.
Such fixed poles in the J plane are inconsistent with
the analytic continuation in J of the unitarity equa-
tion if the partial-wave amplitudes are meromorphic
functions of J. However, as was shown by Mandel-
stam,’® there is a mechanism for the generation of
branch points in the J plane. Furthermore, these
branch points move in such a way as to break the
chain of argument which would otherwise imply, as
shown by Gribov and Pomeranchuk, that the fixed
poles at negative integers generated essential singu-
larities at these points. A less agreeable feature of the
Mandelstam mechanism for the generation of moving
branch points is, ironically, that it also invalidates the
assumption of the Mandelstam representation itself.
It is not the analytic structure embodied in the
double-dispersion relation which is found wanting,
but the asymptotic behavior of the amplitude. In
order to write the Mandelstam representation, it is
necessary that behavior for large ¢ of the amplitude
T(stu) shall be bounded by some power of ¢, say 1%,
uniformly in s, so that we can choose N independent of
s. What Mandelstam himself observed was that the
moving branch points can and do move arbitrarily
far to the right in the J plane, and so their contribu-
tions to the asymptotic behavior of T(stu) cannot be
uniformly bounded by a power #*.

This unboundedness of the number of subtractions
needed for the dispersion relations precludes an
application of the analog of the Regge approach
which we wish to develop to the whole scattering
amplitude. Rather, it can only be applied at best to
some portion of the scattering amplitude (say,a set
of Feynman diagrams) which does satisfy the Mandel-
stam representation. Henceforth T(stu) will denote
some such portion of the amplitude. In fact,we feel
obliged to limit still further the function which we
can discuss, and consider what we will call T (stu),
which is that part of T(sru) which arises from integra-
tions over the “third” or t~u double-spectral function.
[t should be emphasized that it is with such contribu-~
tions to the full amplitude that all of the special
features (fixed poles, branch cuts, and the like) of the
crossing-symmetric theory are associated.

12 Y, N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239

(1962).
13 §. Mandelstam, Nuovo Cimento 30, 1113, 1127, 1148 (1963).

J. M. CHARAP AND B. M. MINTON

Explicitly, we suppose that 7% satisfies the double-
dispersion relation

1 dt’ '
T(S)(stu) — __ZJ‘_I___J‘ ldu p(3)(tr’ ll,), (68)
m™JtU —tJu —u

the support of p'® lying entirely in ¢/ > 0, &’ > 0.
The generalization to the less restrictive situation
where a finite number of subtractions is needed
presents no problems. Our real concern is to estimate
the behavior of such an integral as z-» co with s
fixed.

We make the expansion

TOstu) = Y 2m 4+ n + 1AL E,. (1, u), (6.9)

so that we have

4%, =”dtduFm(t, u)lif,l_d‘_f_du_ ),
W m t —t u’ —u
’ (6.10)

The convergence of Eq. (6.8) will be assumed such as
to permit the interchange of the orders of integration
in Eq. (6.10), and we then obtain

A = —1; f dr f du' p®(t'u")G,,,(t'u’). (6.11)
™

A little care is needed if the support of p'3 intersects
A, but the ie prescription for the denominators
selects unambiguously the appropriate branch of G,,,;
one must replace G,,,(t'u’) by G,,,(t" — ie, u’ — i)
We can now extend the definition to complex param-
eters by

A(u, v) = —%fdt'fdu'p(s)(t'u')éﬂv(t’ — ie, u’ — i€’)
ar
(6.12)
with the definition
A(m,n) = (=A%,

for m and n integers.
The double sum of Eq. (6.9) can now be written

as a contour integral:

(6.13)

T®(stu) = — if dyf dv2(u + v + 17
r, Jr,
X A(u, v)E,(tu) csc mu csc mv.  (6.14)

The contour I'y(I';) encircles each of the points
u=0,1,2---(»=0,1,2,--) once in a positive
sense, and no other singularities of the integrand.
The integrand is meromorphic in the region for which
the integral in Eq. (6.12) defining A(uv) converges,
which certainly includes Re 4 > 0 ® Re v > 0 from
the hypothesis of no subtractions being needed .in
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the double-dispersion relation. Its only poles in this
latter region are those encircled by the contours at
which the residues generate just the terms of the
double sum.

The distortion of the contours of integration
entails a discussion of a number of points, none of
which we have been able fully to elucidate. Firstly, we
shall be concerned with contributions from arcs of
the contours at infinity, and this leads to the question
of the asymptotic behavior of the integrand for
[u]l — o0, || — 0. A treatment of this problem, which
essentially means the treatment of the behavior of
E,, and of G,, in this same limit, is inevitably ex-
tremely difficult. The analogous problem in the
Regge program is solved because one knows the
behavior of Py and of g for /| — co. More gener-
ally, thanks to the heroic efforts of Watson,* we know
the asymptotic behavior of Gaussian hypergeometric
functions of large parameter. For the generalized
hypergeometric functions of the present discussion,
we know of no treatment of this problem whatever.

We might trust physicists’ luck and assume that the
large u, » behavior is satisfactory. This is tantamount
to the assumption that Eq. (6.12) represents the
“correct” analytic continuation in g, ». There then
arises the problem of singularities of the integrand
A(uv) csc mu csc v other than the ones which lead
to the terms of the double sum. In particular,there are
the poles of the cosecant functions when u or » are
negative integers. Again,one might hope that these
could be exploited in such a way that the E,, in the
integrand could be replaced by that part of E,, which
behaves for large z like z#%¥, which as we have seen

[Eq. (4.15)] is
—sin wuv sin mv(2n?)~t sec m(u + ¥)G_, ;1 4.

This would be analogous to the method introduced
by Mandelstam,?® which is used in “pushing the back-
ground contour to the left” and replaces P; by
—altan nJQ_;_,.

There would then remain the singularities of the
integrand which came from the analytic continuation
of A(uv), and these one could presume, like the
Regge poles, etc., of the analytically continued
partial-wave amplitudes A4%(J,s), were dynamical
rather than kinematical in origin. One could also
hope that A(uv) was meromorphic, unlike A%(J, s)
'with its branch cuts. In any case, there would be
singularity surfaces in the (u,v) space. From our
hypothesis that there were no subtractions in the
Mandelstam representation, it certainly follows that

1 G. N. Watson, Trans. Cambridge Phil. Soc. 22, 2771 (1918).
15 S. Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962).
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the region Re (¢ 4+ v) > 0 is not intersected by such
singularity surfaces. Indeed, there will in general be
a complex number «, with Re oy < 0 for which the
surface 4 4+ v = «, osculates a singularity surface of
A(uv) and for which any other osculating surface
@+ v = o will have Re « < Re «;. Distortion of
the contours I'; and I', of integration in Eq. (6.14)
would then lead to an integration over some two-
dimensional surface in (u, ¥) which lies entirely inside
the region Re (4 + v) < Re «,; the integrand would
be proportional to G_, ;_, (7, u), and so behave
at fixed a and large z like (az)**", and the implied
behavior in this limit for 7% (stu) is then of the form

T® (stu) ~ J daw(a)(az)?, (6.15)
r

where I' is a contour which lies entirely in Re & <
Re , and which has « = «, as an end point. To within
a logarithmic variation, this means that we have
T ~ (az)», and the important feature we wish to
emphasise is that «g is fixed and is some complex
number determined by the dynamics [through p®].

The above analysis would suggest that, if all of our
many assumptions are in fact justified, the piece 7'
of the amplitude which we have discussed behaves at
large z like (az)®, with «, fixed (with some additional
logarithmic factors which are also independent of a).
Put in terms of the J plane, this means we have
suggested a mechanism for the generation of fixed
branch points; the contour I' in Eq. (6.15) is, of
course, just the branch cut in the J plane. It would
seem to be an open question whether such fixed
branch cuts are present in the full amplitude.
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APPENDIX A: THE PARTIAL-WAVE
EXPANSION OF F,,

The function F,,(t, u) is a solution of

OF, = (s +v)(u + v+ 2)F,, (A1)

which is regular at 1 =0 and at u =0, i.e., when
z = 1 and when a = 0. This differential equation is
separable in z and @, and the solutions of the form
Z(z)A(a) with the stated regularity conditions are
just FJ (a, z). It follows that, for some coefficients
7 to be determined, we must have

uv
Fu(t u) = 2520 + D)\ F L (a,2).  (A2)
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Then, for each integer value of J,
fhalsFip+v+J +2,0 —pu—v,2] + 2:q)

=3 ledzPJ(z)Fuv(t, u), (A3)
so that )

+1
fi, =lima™} f dzPy(2)F (t,u). (A4)

a=0 -1

Now from the defining series expansion, Eq. (2.7), for
F

uv>s
—u— + . +1
FIIV(ta u) = z( “ )zz+q('/: v )p( )a
v.q plq:

(I (2] s

The integral

+1
f dzP y(2)F o, 1)

—1
('_:u - v),,+q(u + l)p(v 3 1)(1

z 12 212

Pq P q:

X a4 f:ldzPJ(z)(l _2— Z)p<1 -2'_ Z)q (A6)

is thus expressed as a sum over terms which vanish
unless p 4+ ¢ > J, and it is easy to see that

('—lu - V)zz a(/u + 1)],(1’ + l)a
f;{v = z - 12,12
D.Q pq
pta=J
+1 _ » a
x 1 f dzPJ(z)( L Z) (Lif) (A7)
-1 2 2

We need the simple integral

} f:ldzPJ(Z)(l =~ z)p(l : Z)H= ey J"f o
(A8)

If this result is substituted in the sum for £, Eq.
(3.11) may be derived directly.

To derive the coefficients £/ of the crossed-channel
expansion of Eq. (3.16), we start from

—m — n),(m+ 1), (n+ 1),
an(t’ M) = z ( )p+p(!2 ql2 >
P.q . :

pre<mtn

1 -z

q
x (1 — b)”b“(—z—): (A9)
We shall need

+1 I—Z a (_I)Jq|2
1 1 P z t) bS] -
2L‘z‘ s ‘)( 2 J+4q+ Dl g—J!
for ¢ > J,
=0, for g<J. (Al1Q)
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This leads to

+1
% dthJ(Zt)an(t7 u)
—1

(_m - n)zﬂ—q(m + l)p(n + 1)«

= 2
12 2
ﬂ+q1§gn+7z p: q!
a=J
—1 J !2
x (1 — b)’b" (=17 (A11)

J+qg+D@g-n"

which vanishes for J > m +n. For J<m+ n,
after expanding the factor (1 — b)” and some straight-
forward manipulation, there results

mtn—~J mtn—J—r (__ {\S}r+s
(—b)J Z Z ( 1) b (n + 1)r+J
Q2J +r+ D!r!s!

r=0 §=0
myn—~J—r .
X z ( m n)P+J+T(m + 1)12 . (A12)

p=s pl(p — s)!

The summation on p may be performed using Vander-
monde’s theorem, and then, after further simplifica-
tion, we obtain

—0y"S (b= = )y —m)
o J+E m+n—J—k
(n + 1) ym + B!
ml (2] + ) k! (m + n — J)!

% F(n+J+1,—k,J——m—n_])
32-——m—-—,2J+2 ’ s

(A13)

in which the 4F;, series is Saalschutzian and so is given
by

J+1—n(J+m+n+2)/20 + 2)(m + 1),.

A few further manipulations then lead to

+1
} f dz,P Jz)F ol 1)
-1
=fI b/ FmH+n+J+2J—m—n;2J +2;b),
(A14)

with fJ =0 for J> n, and given by Eq. (3.18)
otherwise. The derivation of Eq. (3.17) for &/
proceeds similarly.
APPENDIX B: THE CROSSING MATRIX
As stated in Eq. (3.21), the crossing matrix is given
by
fiy = 2+ N+ 02 [ a1 duE (WP a9
. (BI)



TWO-VARIABLE EXPANSION OF

This may be rewritten as

1 +1
Xmno=2M + N + 1)2f bdbi—f dz,
0

-1
X 2(2‘] + l)e;mgrr{z-kn(b, Zt)
J=e
X 2 QI+ Df T 1ranlb, z,).
T

The presence of a factor P,(z,) in & _ (b, z,) means
that the z, integration is straightforward, and there
results

(B2)

mn

i n
wn =AM 4+ N+ 1) f bdbS (2 + D fh
0 J=0

N (m+n—~J0)QJ+ D
(m+n+J+ 1)
(M + N —=D1QJ + D
M+ N+J+ D!
x B PRI ~ 2b)PEIN (1 — 2b).
(B3)

The orthogonality property

1
2k + 1) fo b dbb* P2IF-0(1 — 2b)

X PRIEO(1 = 2b) = 8,5, (B4)
for k and K integers, shows immediately that X7.%
vanishes unless m +n =M + N.

The explicit evaluation of X737 is now most easily
effected by returning to Eq. (B1) and using the power-
series expansion for E,, and the Rodrigues formula
for F;y. Then partial integration yields
(=DMNUM + N + 1)

MIN!

% g (m +n+ 2)p+q(—m)m(—n)q
=0 p¥ql?

xffdu dsuMsN(1 — u — )MV
A
9\ WY
X {=) (=) [(1 — u — s)*u”]. B5
(5) ()1 Purl  (BS)
Evidently, the integrand vanished unless p + g >
M + N. But we know that p + ¢ < m + n and also
that M + N =m + n for nonzero clements of X.
This means that

ma
MN —

3

=0

n (__1)111+N2(m + N + 1)2
XJIN =
M!N!
x (m +n+ 2)m+n(—m)m(-n)n
m!?nt?

xfjdu dsuMsN(1 — y — s)MN
A

2\M 9\
* (EJ) (5:) 10 = 0= 9" .
(B6)
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and using the standard integral
LAY y!
J‘J‘dudsu“sﬂ(l—u—-s)"= x! ,
(e + B+ y+ 2
4 (B7)

the result Eq. (3.23) follows directly.
APPENDIX C: THE OPERATOR O AND ITS
EIGENFUNCTIONS
The differential operator O is given, in terms of the
independent variables a and z, by
iro d d 0
O=~-|—dl—-a)— 4+ -2 —J Ct
a[aa ( )aa az( )az (€D
For suitably well-behaved functions f and g, so that

it is possible to integrate by parts and discard the
integrated part, it is easy to see that

(g,0f) = f f dt dug*of
A

1 +1
= %f adal| dzg*f
0

1
1 +1 *
= %Jadaf dz[a(l ——a)gg*al
0 -1 da da
1 — z*9g*of
+ C2
a 0z az} (€2)
It then follows that
(8, 91) = (f, 9g)*, (C3)
and that
(/,9/) 20 (C4)
with equality if, and only if, fis constant on A,
If fis an eigenfunction of O, we will write
Of = 20+ f. (C5)

Note that F,,, £,,, G,,, and G_,_1_, ,areall of them
eigenfunctions of O with

A=+, (C6)
If,in addition, f is well behaved inside and on A, we
have

L9f) =24 + (. /) > 0, (€7

so that A(A + 2) is real and nonnegative. If Of = 0,
f must be constant, and otherwise we have A real and

A>0 or A< =2
Also, if
Of =22+ 2)f (C8)
and
Og = ¥(X + 2)g, (C9)
with
MA+2)# 2 (N 4 2), (C10)
then
(g./)=0. (C11)

The above results are,of course,standard results on
self-adjoint operators,
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On Continuous Eigenvalues in Neutron Thermalization
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The continuous eigenvalue spectra of the linearized Boltzmann operator describing the energy distri-
bution of neutrons in an infinite Einstein crystal are studied. This operator consists of two terms: a
multiplication operator and an integral operator with J-function-type singular kernel. The eigenvalue
problem is transformed into the solution of an inhomogeneous integral equation by applying Case’s
method on the one-velocity transport equation. The existence of the solution of the integral equation
is examined by the Neumann-series expansion. It is found that for sufficiently low temperature the
range of numerical values of the multiplication operator forms the continuous eigenvalue spectra of the
Boltzmann operator and the corresponding eigenfunctions are of J-function type.

1. INTRODUCTION

The time-dependent behavior of neutrons in matter
is described by the linearized Boltzmann transport
equation

¢

L — —Bé¢,

ot ¢
where ¢(r, Q, E, t) is the neutron flux per unit energy
interval per unit solid angle at position r at time 7.
B is the Boltzmann operator and it usually depends
on (r, Q, E). If we assume the solutions of Eq. (1) to
be of the form

1)

é(r, Q E, t) = o(r, Q, E)e™, (2)
we have the eigenvalue problem
Bo(r, Q, E) = Ag(r, Q, E). 3)

One of the tractable cases for this eigenvalue
problem is found in the spatially independent thermali-
zation theory. In this theory, the energy (velocity)
distribution of neutrons in an infinite homogeneous
medium is studied,and the Boltzmann operator takes
a rather simple form':2:

Bg(E) = v[y(E) + o(E)]e(E)
_ uij(E' s E)p(E') dE', (4)

where v is the neutron velocity corresponding to the
neutron energy E, »(E) is the absorption cross section
at energy £, o(E) is the scattering cross section at
energy E, and G(E'— E) is the scattering kernel
representing the cross section for a neutron with
initial energy E’ and with final energy £ after a
collision. o(E) and G(E'— E) must satisfy the

LE, R. Cohen, Proceedings of the International Conference on the
Peaceful Uses of Atomic Energy (United Nations, New York, [955),
Article P/611.

2 M. M. R. Williams, The Slowing Down and Thermalization of
Neutrons (North-Holland Publ. Co., Amsterdam, 1966).

relation
)

The kernel vG(E’— E) of the Boltzmann operator
is not a symmetric function, but it can be symmetrized
by introducing the new dependent variable

Y(E) = p(E)|EIM(E)} (6)
and taking account of the detailed balance condition
M(E)G(E'— E) = M(E)G(E — E'), 7

where M(F) denotes the Maxwellian distribution at
temperature 7,

o(E) = ﬁ “G(E — E") dE.

M(E) = Ee ¥/T,
The eigenvalue problem then becomes
Hy(E) = vy(E), )
H(E) = QEIWE) — [ K(E\ EIW(E) dE, (10)

®)

, o TMENE. . b
K(E,E) = K(E, E') = | ——| G(E' — E)(EE")?,
(E'E) = K(E. E') [M(EJ (E'— E)(EE')

(11)

O(E) = EX[y(E) + o(E)]. (12)

There are several investigations®* on the eigenvalue
spectra of this kind of operator. In these investiga-
tions, the integral operator with a well-behaving
kernel, such as the L? kernel, is regarded as the
perturbation to the multiplication operator Q(E),
but one expects that the range of numerical values of
the function Q(E) still forms the continuous eigen-
value spectra of the operator H. This conjecture has
been proved in the framework of the theory of L?
(square-integrable)-function space. Then the interval
min Q(E) to max Q(E) can be considered to be the
continuous eigenvalue spectra of H. This is the
principal result obtained by those investigations.

3Y. Shizuta, Progr. Theoret. Phys. (Kyoto) 32, 489 (1964).
4N, Corngold, Nucl. Sci. Eng. 19, 80 (1964).
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In the present paper we study the operator with
the singular kernel which contains Dirac ¢ functions
representing the Einstein crystal scatterer. The eigen-
value problem is transformed into the solution of an
inhomogeneous integral equation by applying to the
eigenvalue equation Case’s method on the one-
velocity transport equation. The existence of the
solution of the integral equation is examined by the
Neumann-series expansion. The formulation of this
procedure is presented in Sec. 2.

The specified kernel form is given in Sec. 3. In
Sec. 4 we discuss the convergence of the Neumann
series; we show that under certain conditions the
range of numerical values of Q(E) forms the contin-
uous eigenvalue spectra of H even in the case of the
singular kernel and that the corresponding eigen-
functions are of the d-function type.

2. AN APPROACH TO EIGENVALUE PROBLEM
If we put

L(E) =J:OK8(E’, Eyy(E"y dE’, (13)

the eigenvalue equation (9) for the operator H
defined by Eq. (10) can be rearranged as

[Q(E) — v]y(E) = L(E). (14
Although Case’s method’ was originally intended for
the one-velocity transport equation, an analogous
device can be applied to Eq. (14). Thus, dividing
both sides of Eq. (14) by {Q(£) — »], we have

L(E) N
oo + CWIE — E),

where P denotes the Cauchy principal value, C(») is a
constant, é is the Dirac é function, and

Q(E) —»=0. (16)

Equation (15) is the formal expression of the eigen-
function ¢(E) of H, corresponding to the eigenvalue ».

This procedure is based on a theorem®” of distribu-
tion theory which states that, for an infinitely differ-
entiable function «(x) and for a simple zero x, of
a(x), a distribution T, satisfies a(x)T, = 0 if and
only if T, = Cd(x — x4), where C is a constant.

Substituting Eq. (15) into Eq. (13), we have an
integral equation for L(E), namely,

[+ , ( /) ,

I(E) — P _LE)
(E) LK,,(E,E) ) - dE

= CWKE,,E). (17)

5 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).

¢ L. Schwartz, Théorie des distributions (Hermann et Cie., Paris,
1950}, Vol. 1.

? L. Schwartz, Méthodes mathématiques pour les sciences physigues
{Hermann et Cie., Paris, 1961).

WE) =P (15)
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If Q(E) — v # 0 for every E, Eq. (15) must be
L(E)

E) = ———2 18
y(E) OE) —» (18)
and Eq. (17) must be
© L(E") ,
- K(E,E)——2—dE =0. (19
we - K p (19

In the interval 0 < v < min Q(F), there may be
discrete eigenvalues corresponding to the eigenfunc-
tions of the integral equation (19). For max Q(E) >
¥ > min Q(E), if there exists the unique solution of
the integral equation (17), Eq. (15) represents the
continuum solution of Eq. (14) and the interval forms
continuous eigenvalue spectra.

The existence of the unique solution for Eq. (17) is
examined by the Neumann-series expansion. Starting
from

LO(E) = CK(E,, E), (20)
we calculate successively
L@ =p| ZED p @yap, k=1
o Q(E) — »
(21)

and construct the iterated solution X~  L,(E). The
uniform convergence of the iterated solution ensures
the existence of the unique solution for Eq. (17).

3. SINGULAR KERNEL

The scattering kernel for an Einstein crystal® is
given by

G(E' - E Q, 22
(B~ E) = f e 22)
dzg Ty

— = — | —) §(k, €), 23
dQ dE 477(E’) &, <) 23)

S(k, €) = exp [-— R, coth ﬁ:' > 8(JE,— ¢)

E, 2T |i=Zw
x 1 m[ o }e’MT’ (24)
sinh (E,/2T)

where o, is the bound-atom cross section, E, is the
value of the single-energy level, 7T is the temperature
in energy units, M is the mass of scatterer atoms, m
is the neutron mass,

e=E —E, (25

= (m{M)[E’ + E — 2(EE")} cos 0], (26)

and 1;(z) denotes the modified Bessel function of
order |j|. The modified Bessel function is defined by

9] (2/2)v+2k

I(z)=2

. 27
e k!T(» + k4 1) 27
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In the following analysis, we confine ourselves to a
special case where this kernel takes a simpler form
and yet which is based on physically reasonable
assumptions and has a clear physical interest. Thus,

we assume that
E2T>» 1, (28)

the summation over j is taken with respect to j = 0,
+1, and the other terms are truncated. The latter
assumption corresponds to the one-phonon approxi-
mation.? Furthermore, we can omit the j = 0 term
because it represents the elastic scattering and does
not affect the eigenvalue.

From assumption (28) we have

RyJE, 2Ry/E,

R ~ 0, (29)
sinh (E,/2T) exp(E,2T)
coth (E,/2T) ~ 1. (30)
From the definition we have, for z ~ 0,
Ii(2) = 3z + 9(2%, (31)

and then, combining Eq. (29) with Eq. (31), we find
that

1(:_&]/E_T_} ~ & e‘—Er/2T. (32)
sinh (E,[2T) E,
Thus,in our case, Eq. (24) is reduced to
S(k, €)
E
— BE[§_E e)e—Er/zrll[ : Ro/E, }
sinh (E,/2T)

+ 8(E, — )eB/11, [m_nl%za/g_izﬂ]}

= (Ry/E)e P/ B6(—E, — &) ™'T + 8(E, — ¢)].
(33)

From Eq. (22) the scattering kernel is calculated as
i
o, (E
E — E)=—(—| | S(k, €) dQ
GE ~ B = () [k,

I
- 5@(5) f S(K, ) sin 0 d
2\E') Jo

Ry(m)

oM .
B 4mE’ Jryto) S(k, <) dRo, (34)
where
Ro(m) = (m{M)(E} + E*), (35)
Ry(0) = (m/M)(E* — E}) (36)

Substituting Eq. (33) into Eq. (34), we have
G(E' — E)
— (BE)O(~E, — E' + E)eP/T 4 §(E, — E' + E)]

Rolxn)
X f &’e—R”/E'dRO, (37)
Re0) E,

MASAMICHI TOKIZAWA

where
B8 = o,M/4m. (38)
If F(E’', E) denotes the integral in Eq. (37), we have
. Ro(?‘r) R
SE,E)=| Tt mEgR,
Rot») E,

— Er[ (RZ(O) + 1) e~ EotOV/E;

r

_ (&)bf_ff) 1 l)e—Ro(fr)/E’r:]_ (39)

For brevity, we change the scale of the energy E
so that E, = 1 and we assume this throughout the
rest of this paper. Then the scattering kernel finally
becomes

G(E'— E) = ¥(E', E) - A(E', E), (40)

where
F(E', E) = [Ry(0) + 1] Bo® — [Ry(m) + 1]eFo®,
(41)

A(E', E) = (B*|ENINE — E' — DeV'T

+ 8E —E +1)], (42)
Ry(m) = o*(EY + E'}y, (43)
R,(0) = «X(E} — E'})?, (44)
o’ = m/M. (45)

Now we shall turn to the determination of Q(E).
From Eq. (5) we have

o(E) = L “S(E, E') - A(E, E') dE’

= (BE) f “HE, EVNS(E — E — 1)e /T
+ &E" — E + 1)] dE’
= (BYE)NFE, E + De VT + F(E, E — 1)).
(46)
From Egs. (41), (43), and (44) we have
FEE+1)={E+ D} —EP+ 1)
x exp {—a’[(E + 1)} — E*]*}
— {(E + D} + B+ 1)
x exp {—a?[(E + D)} + E}P?}, (47)
FE E—1)={}(E - D} — EP + 1)
x exp {—a?[(E — 1)} — E}]?}
— (®[(E — 1)} + B}’ + 1}
x exp {—a?[(E — D)} + E}?). (48)
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If we assume the usual 1/v absorption,? y(E) takes

the form

y(E) = afE}, (49)

where a is a constant. Then Q(E) becomes
Q(E) = a + (B/EDIF(E, E+ 1)e™'T + §(E, E — 1)].
(50)

AsE— o, F(E,E+ 1)—>1and F(E, E—-1)—1;
consequently,

Q(E)—a + (BYED[L + &7/7).
Because (1, 0) = 0, we have

(51)

Q(1) = a + 2 VTF(1,2)
=a + e VT{[a3(J2 — 1)? + 1]
x exp [—a?(\/2 — 1)?]

— [o*(y/2 + 1)* + 1 exp [—a¥(y/2 + 1)*)}
(52)
for the value of Q(E) when E = 1.
It can be shown that the derivative of Q(E) is

dE
X ({[p(E) + 1]e>®
. [q(E) + l]e—a(E)}e—llT
+ [p(E _ 1) + I]e—p(E—l)
— [9(E — 1) + 1]eE-1)y
+ E {[pZ(E)emp(E) + qZ(E)e—q(E')]e—I/T/
ENE + 1)}
+ [p2(E _ 1)e—p(E—1) + qZ(E - l)e—a(E~l)]/
EXE — DY), (53)
where
p(E) = o*[(E + 1)f — Ep, (54)
q(E) = o*[(E + D} + EIP. (55)
Therefore, we find that
(dQ(E)) _ 56)
dE Jr=1
In the interval 0 < E < 1, we find that
FE E— 1) =0, (57

because the energy transfer beyond E = 0 does not
occur, and then the 8(E — E’ + 1) part of A(E’, E)
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FiG. 1. The propagation of d-functions.

in Eq. (42) must be considered to lose effect in this
interval. Then,it follows that

1
Q(O) =g + ﬁ2e—l/T hm &E’%_) . (58)
E-0 E
It is easily shown that, as E— 0,
S(E, E+ 1)
o
- 452} 3
e+ 1)1 exp [ 4o;E (E+1) ]_403
E
x exp (—a?)
and,consequently,
— 4o exp (—a). (59)
Thus, we obtain
Q0)=a+ 4% exp[~(cF + TY].  (60)

The necessary knowledge of the behavior of the
function Q(E) is obtained from Egs. (51), (52), (56),
(57), and (60). Figure 1 shows a sketch of the curve
which represents Q(E).

4. CONVERGENCE OF THE NEUMANN SERIES

From Eqs. (11) and (40) our symmetric kernel is
given by
M(ENT? 1
K(E',E) = | ——=| -(EE)" - X(E', E)- A(E, E).
( )[M(EJ()T&( ) A(E, E)
(61)

We shall begin the construction of the iterated
solution of Eq. (17) with Ly(E) given by Eq. (20).
Here it is assumed that C = 1, because the iterated
solution is proportional to C. Then, from Egs. (21),
(41), (42), and (61) and repeatedly applying the
relation

f 8(a ~ X)d(x — bydx = 8(a — b),  (62)
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we find
* K(E', E) , ,
L(E) = ——
5 =p| S LE) dE
_ ss(Ev+1,E)[ M(E,) T
Q(E, + 1) — vLM(E, + 1)

x [(E, + DE,F(E,, E, + 1)
4
x —P 15 — (E, + 2)

E(E, + 1)
+ e—llTé(E - Ev)]

H(E, — 1, E) [ M(E,) ]*

O(E, — 1) — » M(E, — 1)

x [(E, — DE,FH(E,, E, — 1)
g Ty
X BE =D e VT8(E — E,)
+ XE — (E, — 2))), (63)

where

M(E*®)
E*, E** —_
s =[5
According to Eq. (21), a calculation is successively
performed in order to obtain L,(E), k =2,3,---.
Equation (63) shows that two & functions &(E' —
(E, + 1))and 8(E' — (E, — 1)) of Ly(E") = K,(E,, E')
generate two pairs of d-functions §(E — (£, + 2)),
8(E — E,) and 8(E — E,), 8(E — (E, — 2)) in Ly(E).
Generally,at the kth step,

©SE.E)
o QE)—1v F
X [ME — (E' + 1))e™T + §E — (E' = 1))]
X L, 4(E") dE’, (64)
it is seen that, if L, ;(E) contains 6(E — &), the term
O(E — (E’' + 1)) generates 8(E — (£ + 1)) and the
term &(E — (E' — 1)) generates 8(E — (&£ — 1)); that
is, the former shifts the position of 4 function on the
E line by +1, and the latter shifts the position of J
function by —1. This suggests the introduction of the
“forward-shift operator” 4, and the ‘“‘backward-shift
operator” B, which are defined by

A[ME — (E, + m)] = ANE — (E, + n + 1)),

H

L(E) =P

for E,+n>0, (65
for E,+n—1>0, (66)
where
2
An — b(Ev + n, Ev + n + 1) . ﬁ e—l/T’ (67)
QE,+n)—v E,+n
_ 2
p,=dbtmban=D b (g
OE, +n)— v E,+n

and # is an integer.
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Q(E)

F1G. 2. The shape of Q(F).

It can be shown that if L, ;(E) is proportional to
O(E — (E, + n)), then L(E) is expressed by 4 and B
as

Ly(E) oc [4,0(E — (E, + n + 1))

+ BXE — (E, + n— 1)]. (69)

Figure 2 shows the propagation of the d function
caused by the branching expressed by Eq. (69). Here
two ¢ functions are placed at £ = E, + 1 for k = 0.
Since §(E — E,) is a symmetric function with respect
to E = E,, the principal value of Eq. (64) must
vanish for 6(E — E,) contained in L, ;(E). In other
words,

(70)

From the above argument we see that the Neumann
series of Eq. (17) is expressed, finally, by a linear
combination of J-functions which are placed at
E=E,+n(>0)wheren =0, +1, 42, - -, Thus,
what we have to show is the convergence of the series
>0 My, for every n where M, , is the coefficient of
NE — (E, + n)) in Ly(E).

In order to construct a majorant for the series
o1 ], the following preliminary estimates are
necessary:

M(E, + n)
M(E, 4+ n+1)
_ (E, + n)exp [—(E, + n)/T]
" (E,+n+ )exp[—(E, + n+ 1)/T]

)el/T < el/T’ (71)

- (1 S
E,+n+4+1
WE, + n + D(E, +mit < (E, +n+ D}, (72)
SE,+nE, +n+1)
< o?[(E,+n+ 1D —(E, + ) +1
< a¥(E,+n+ 1)+ (E, + n)

—2[E, +n)(E, +ni} + 1 =a?+ 1, (73)
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for E, + n > 0. The inequality (71) follows from the
definition of M(E), and the inequality (73) from
Eqgs. (41), (43), and (44). These estimations are
applied to majorize 4,. In order to majorize B, we
have the similar estimates:

M(E, + n)
ME, +n—1)
_ (E, + n)exp [—(E, + n)/T]
T (E, 4 n — 1)exp [—(E, + n — 1)/T]

= (14 e s
E,4+n—1

for E,+n—1>1, (74
(E, + n— )E, + M}t < (E, + n),
for E,+n—1>0, (75

SE, +n E,+n-—1)
< 2[(E, +n— D = (E, + miP + 1
< o(E,+n~1)+ (E, +n)
—2[(E, +n—D(E, +n— D +1
= o 4 1, E,+n—-12>0. (76)
When E, +n — 1 —0, the inequality (74) does

not hold and it is necessary to examine the behavior
of B, . In this case B, is expressed by

HE, +nE, +n—1)
(E, +n — 1)}
where K is the factor which takes a finite value as
E,4n—1-0 1If we put x=FE, +n—1, we

have from Eq. (47)
Sx+ 1,x)
= exp [—a?(2x 4 1)]
X {[e2(2x + 1) + 1 — 2e2(x(x + 1)}
X exp [203(x(x 4+ 1))f]
— [22x + 1) + 1 + 202(x(x + 1)}
X exp [—2e2(x(x + D). (78)
Substituting the Taylor expansion
exp [+22%(x(x + )]
=1 4 20%(x(x + D)} + 2atx(x + 1) + O(x),
(79

for

B,=K .

we find

S0 exp [—oi(x + 1)
X

x {4arx(x + DE2x + 1) + 0D}, (80)
Thus, we see that

lim B, = fim K S+ LX) _

x—0 z—0 x%

0 (81)
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and then the majorant of Eq. (74) is valid for
E,+n—-120.
At first we assume that E, > 1, so that
Q(E) ~ a + c*fYIEY, (82)
where
*=1+ eV (83)

From (67), (71), (72), (73), and (82) we find a
majorant for |4,|, n > 0:
ellzT(az + 1)
la + c*BXE, + nyt — 4]
(E,+n+ 1t
E,+n

Substituting [(E, + n + 1)J(E, + n)]} <~/2into (84),
we have

(4. <

(4, <

ﬂ2e—l/T. (84)

V2 (@ + 1)p?

e*6 + (a — WXE, + n)|
V2@ + Dp?

T le*B + (a = (E, + DY

From (68), (74), (75), (76), and (82) we find a
majorant for |B,|, n > 0:

e——l/?T (85)

—1/27
[4 / .

(86)

5 ,~1/27T¢ 2 1
< 2D EAnt
la+ c*BXE, +n)*—9v E,+n
- NG R _ 1T (88)
c*8* + (a — »)(E, + n)?|
~ 2 2
< \/2 (a® + 1B : ~1/2T. (89)
lc*8® + (a — »)(E, + 1)*|
Putting
o= —N2EFVE g
le*B2 + (a ~ W(E, + D}
we have, for n > 0, that
(Al < we™?T, (91)
|B,| < we /T, (92)

For n < 0, the behavior of A, for E, +n—0
must be examined. Putting x = E, + n, we have an
expression similar to Eq. (77):

» = K'[F(x, x + D/xi]. (93)
By means of (59) we find easily that, as x — 0,
A,—0 (94)

and Eq. (67) is then valid for E, + n > 0. We see that
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(85) also gives a majorant for |4,|, n < 0, and so
V2 (@ + 1)p
|c*8* + (a — »)(E, — D}

Similarly, (88) also gives a majorant for |B,|, n < 0,
s0

~1/2T
€

14, < 95)

lB l < \/E(az + 1)/32 e—1/2T (96)
" [e*B% + (a — 9)(E, — DY
Putting
Y 2 2
o — V2« + DB ’ ©7)
[c*82 + (a — W)(E, — D}

we have, for n < 0, that
A, < w'e?T, (98)
)B”‘ < w'e —-1/21’ (99)

Next we treat the general case in which the assump-
tion (82) on Q(E) is not postulated. A majorant for
I4,), n > 0, is given by replacing

la + c*BHE, + n)F — ]
of Eq. (84) by

¥y = min |Q(E, + n) — v] # 0. (100)
Thus,
)A i < M ~1/27 (101)
" pE, + b
\/2(0‘ + 1)5 12T (102)
yo(E, + 1)

Similarly, a majorant for |B,[, n > 0, is given by
replacing |a + c*B*(E, + ny % — »| of Eq. (87) by 7,
defined by Eq. (100). Thus, we have the same
majorant (102) for |B,| as for |4,]. Putting

0" =2+ DEUE, + DY (103)

we have, forn > 0,
14, < w"e*T, (104)
|B,| < "¢V, (105)

We see that majorants for |4,| and |B,|, n <0,
are given by replacing |a + c*B(E, + n) ¥ — »| of
Eqs. (84) and (87), respectively, by

’

yo= min [Q(E, + n) — 7| 0.

—Ev<n<0

(106)

TOKIZAWA

Thus, we find that

4, < [VZ (@ + DBYyiE, + e T (107)
< V2 (@ + DByle T, (108)
Bl < [V2 (& + 1Byl 7. (109)
Putting

0" =2+ DYy, (110)

we have, for n < 0,
[4,] < o"e 12T, 111)
(B,| < w"e T, (112)

Next we shall construct a majorant series for
Do |, | 1t is enough to present a majorant series
in the case of the asymptotic Q(E) given by (82),
and of n > 0, because all the cases have the same
expression for majorants for |4,| and |B,| as we have
seen before. At first, for n = 1, Fig. 2 shows that

My, = 1 1,
Ismz J < wie VT < 22(028—1/1’
1M, 4] < 20T < 2% e T,
BRG 1| < Swse—S/T < 26 6 —3/T’

(113)

Ig‘nﬂ,ll < slw'zle—l/T < 221w2le—l/T,

and so on. Therefore, we find a majorant series

2 [Mys| < 3 [(20)%e™ 7Y (114)
k=0 =0
This geometric series converges if
Quw)’e VT < 1. (115)

For any n > 0 we find that

S, .| < 3 (e Ty Qu)te VL. (116)
%=0 =0

The convergence condition (115) is also valid for this
majorant series.

Similar analysis shows that majorant series for
S0y il and 32 |y Ll n <0, with Dy _; = 1,
are obtained by replacing w by " in (114) and (116),
respectively, and the convergence condition for this
series is

Qw) e VT < 1, (117)
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It can be shown for n = 0 that if we put

7= My_y0'e 7, (118)
{= ‘Jﬁo,lwe“l/", (119)
then we obtain
1Mol <71+ &
1My 0l < M 2e T + L7,
M0l < 2[m(@)'e7T + Lw'e 7],
Wl < St + L%, )

[Myp11,0l < Sl[’?(w')me_”T + Lo¥e7VT),

and so on. Therefore, a majorant series is given by

3yl <7 3100 TS + L3 Qo .
_ (121)

The convergence condition for this series is Eqgs. (115)
and (117).
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In the case of general Q(E), we can easily find
majorant series if we replace o by »” and o’ by w” in
related equations or inequalities. Consequently, the
convergence condition for them is found to be

Qo) VT < 1, (122)
Q"2 VT < 1. (123)

We can conclude that, for a sufficiently small T
such that (122) and (123) hold, the Neumann series of
Eq. (17) is convergent so long as v belongs to the
interval min Q(E) to max Q(F) and, hence, this
interval forms a continuous eigenvalue spectra of the
operator H.

Remark: A similar approach will be applicable to
the kernel including more j terms in Eq. (24), or to
the L? kernels, and similar results may be expected.
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Algebraically degenerate solutions of the Einstein and Einstein-Maxwell equations are studied.
Explicit solutions are obtained which contain two arbitrary functions of a complex variable, one func-
tion being associated with the gravitational field and the other mainly with the electromagnetic field.

1. INTRODUCTION

This paper is concerned with algebraically degen-
erate solutions of the Einstein and Einstein-Maxwell
equations. It includes detailed derivations of gravita-
tional vacuum fields, whose results were published
previously by Kerr! and by Kerr and Schild.? It also
includes new solutions of the Einstein-Maxwell
equations.

Units are chosen such that the speed of light ¢ and
the Newtonian gravitational constant G are equal to
unity:

c=G=1. (1.1)

Subject to this, the electromagnetic quantities are
given in ordinary, nonrationalized, electrostatic units.
The signature of space-time is chosen to be +++ —.
Section 2 gives a short summary of the tetrad
formalism which is used throughout the paper.
Section 3 gives the general theory of algebraically
degenerate solutions of Einstein’s vacuum equations
R, = 0. There is only one weak restriction, that the
shear, expansion, and rotation not all vanish for the
null geodesic congruence which has the degenerate
Debever-Penrose directions as tangents. Suitable
coordinates and tetrads are obtained. The problem
of solving ten partial differential equations for the
ten components of the metric tensor as functions of
four coordinates is reduced to solving four partial
differential equations [the complex equation (3.65a)
and the two real equations (3.65b), (3.65¢)] for four
unknown functions (the two complex functions

* This research was sponsored by the National Science Founda-
tion(Grant GP-8868) and by the Aerospace Research Laboratories,
Office of Aerospace Research, United States Air Force{Contract
F 33615-68-C-1675).

1 R. P. Kerr, Phys. Rev. Letters 11, 237 (1963).

2 R, P. Kerr and A. Schild, Atti Del Convegno Sulla Relativita
Gererale: Problemi Dell’ Energia E Onde Gravitazionali (Anniversary
Volume, Fourth Centenary of Galileo’s Birth), G. Barbéra, Ed.
(Firenze, 1965), p. 173; Applications of Nonlinear Partial Differential
Eguations in Mathematical Physics, Proceedings of Symposia in
Applied Mathematics (American Mathematical Society, Providence,
R.1., 1965), Vol. XVII, p. 199.

and M) of only three coordinates (the complex
coordinate Y and the real coordinate p).

Section 4 gives a class of explicit vacuum solutions
in terms of one arbitrary analytic function ¢ of one
complex coordinate Y.

Sections 5 and 6 give classes of solutions of the
Einstein-Maxwell equations for which the metric can
be written in the formg,, = 7,, + 2he? €®,, where 77,
is the metric of an auxiliary Minkowski space and
€®, is null. These solutions admit a one-parameter group
of isometries which are translations in the auxiliary
Minkowski space. The solutions contain two arbitrary
analytic functions ¢ and ¢ of one complex coordinate
Y. In vacuum, when there is no electromagnetic field
present, ¢ = 0 and the solutions are identical with
those of Sec. 4.

Section 7 examines a simple special solution which
gives the gravitational and electromagnetic fields of a
rotating charged body. The gyromagnetic ratio of the
body turns out to be the same as that of the Dirac
electron,

Most of the work described in this paper was
completed in the period 1963-65. Since that time, fur-
ther results have been obtained and will be published
shortly. Kerr and